Abstract:
Aspects of a method and system for a distinct physical pattern on an active channel to indicate a data rate transition for energy efficient Ethernet. In this regard, one or more distinct physical patterns may be transmitted on one or more active channels of a network link during an inter-packet gap to control a data rate on the link. The unique physical pattern may be transmitted instead of or in addition to one or more IDLE symbols. The distinct physical pattern may communicate a data rate to be utilized on the link and/or indicate when a data rate transition should occur on the link. The distinct pattern may be transmitted and/or the data rate transition may occur during a specified inter-packet gap or during a specified packet boundary. The distinct physical pattern may comprise one or more control characters and/or an ordered set of voltage levels, symbols, and/or characters.
Abstract:
A system and method for enabling legacy media access control (MAC) to do energy efficient Ethernet (EEE). A backpressure mechanism is included in an EEE enhanced PHY that is responsive to a detected need to transition between various power modes of the EEE enhanced PHY. Through the backpressure mechanism, the EEE enhanced PHY can indicate to the legacy MAC that transmission of data is to be deferred due to a power savings initiative in the EEE enhanced PHY.
Abstract:
An Ethernet link may comprise one or more link partners that may be communicatively coupled via one or more silent channels. One or more circuits and/or parameters corresponding to silent channels may be retrained, refreshed and/or updated based on various triggers, for example, fixed times, periodic or aperiodic time intervals, random or pseudorandom timer, events, link statistics, physical conditions such as noise, temperature level, cable type and/or cable length, communication from a corresponding link partner and/or based on programming from, for example, a layer above the physical layer. The retraining, refreshing and/or parameter updating may occur for one or more of an echo canceller, a far-end crosstalk canceller and a near-end crosstalk canceller corresponding to the one or more silent channels. Subsequent to the retraining, refreshing and/or parameter updating, the one or more silent channels may be activated and/or may remain silent.
Abstract:
A system and method for enabling legacy media access control (MAC) to do energy efficient Ethernet (EEE). A backpressure mechanism is included in an EEE enhanced PHY that is responsive to a detected need to transition between various power modes of the EEE enhanced PHY. Through the backpressure mechanism, the EEE enhanced PHY can indicate to the legacy MAC that transmission of data is to be deferred due to a power savings initiative in the EEE enhanced PHY.
Abstract:
Aspects of a method and system for controlling a clock frequency in a network device based on aggregate throughput of the device are provided. In this regard, for a network device comprising one or more network ports, a limit on aggregate throughput of the device during a time interval may be determined and an operating frequency of a clock within the network device may be controlled based on the determined limit on aggregate throughput. The limit on aggregate throughput may be determined based on past, present, and/or expected traffic patterns; how many of the device's network ports are active during the time interval, a data rate at which each of the active network ports operates during the time interval; a type of data communicated via the network ports; and/or one or more applications running on the network device during the time interval.
Abstract:
Aspects of a method and system for managing an energy efficient network utilizing Audio Video Bridging are provided. In this regard, an Audio Video Bridging timeslot may be designated for handling an energy efficient networking (EEN) transaction and the EEN transaction may be performed during the designated timeslot. Exemplary EEN transactions comprise scheduling a data rate transition, transitioning to a different data rate, training a link partner, and exchanging training related information. It may be determined whether the timeslot may be reserved for conveying an AVB stream prior to designating the time slot for an EEN transaction. In instances that the timeslot may be unreserved, the timeslot may be reserved for EEN transaction(s). Information exchanged during the designated timeslot may enable scheduling a data rate transition and/or training on a network link. In this regard, a subsequent timeslot may be designated for the data rate transition and/or the training.
Abstract:
An Ethernet link may comprise silent and active channels and may support energy efficient Ethernet communication. Training parameters from the one or more active channels may be utilized for determining and/or adjusting training parameters for silent channels prior to activation. Training parameters for silent channels may be determined based on copying training parameters from active channels. Determination of training parameters for silent channels may be based on a weighted average of the active channel training parameters. A delta between active channel training parameters from a prior time and subsequent time may be utilized to determine a correction factor for adjusting training parameters for a silent channel from a prior time. Silent channels may be adjusted based on active channel training parameters and then subsequently may be trained. Training parameters may be adjusted for one or more of an echo canceller, a near-end crosstalk canceller and a far-end canceller.
Abstract:
Aspects of a system for keyboard, sound and mouse (KSM) over LAN A/V bridging and A/V bridging extensions for graphics thin client applications may include an I/O controller within an LAN subsystem, which enables generation of response data based on input signals from a keyboard device and/or mouse device that is coupled to a computing device. The generated response data may be encapsulated within an encapsulating PDU. The encapsulating PDU may comprise an Ethernet frame and/or and IP packet. The encapsulating PDU may be transmitted via a network based on a traffic class designation. The traffic class designation may enable the transmission of the generated response data via the network based on specified latency target values. A time stamp value may be generated for the encapsulating PDU. The encapsulating PDU may include at least one data type identifier, which indicates that the encapsulating PDU contains the generated response data.
Abstract:
A system and method for carrier deferral for full duplex energy efficient Ethernet (EEE) physical layer devices (PHYs). A carrier deferral signal can be asserted to a media access control layer to indicate to the media access control (MAC) layer that transmission of data is to be deferred due to a power savings initiative in the physical layer device. In one example, the carrier deferral signal is used when a PHY is awakened by the MAC when the MAC has something to transmit. In another example, the carrier deferral signal is used when a PHY is switching link rates.
Abstract:
Aspects of a method and system for duty cycling a network device based on aggregate throughput of the device are provided. In this regard, a limit on aggregate ingress and egress data of a network device during a time interval may be determined. Processing of data by the network device may be duty cycled based on the determination. The device may process data at a first rate during a first portion of the time interval and process data at a second rate during a remaining portion of the time interval. In this regard, portions of the device may be slowed or powered down during the first portion of the time interval. Power consumed by the device during the first portion of the time interval may be less than power consumed by the device during the remaining portion of the time interval.