Abstract:
A motion-activated decorative lighting fixture with a PIR motion detector hidden behind a decorative slotted wall of the fixture body. The motion-activated decorative lighting fixture includes a motion detector housing that forms an integral part of the lighting fixture body. The housing includes a slotted vertically extending exterior wall around the housing with an array of elongate vertically extending slots horizontally spaced apart from one another and extending along at least a portion of the wall. One or more PIR sensors are disposed within the housing, and a segmented Fresnel lens array is disposed within the housing behind the slots to direct infra-red energy from a monitored field of view to a sensor. The lens array includes a plurality of columns of lenslets, at least a portion of which have at least two lenslets disposed one above the other. Each column is aligned with a corresponding slot so as to direct infra-red energy from a monitored zone passing through the corresponding slot to a sensor. The configuration defines an optical path for infra-red energy emanating from a detection zone in the field of view, the optical path passing through a given slot and a lenslet aligned with the slot and on to a PIR sensor.
Abstract:
A motion-activated decorative lighting fixture with a PIR motion detector hidden behind a decorative slotted wall of the fixture body. The motion-activated decorative lighting fixture includes a motion detector housing that forms an integral part of the lighting fixture body. The housing includes a slotted vertically extending exterior wall around the housing with an array of elongate vertically extending slots horizontally spaced apart from one another and extending along at least a portion of the wall. One or more PIR sensors are disposed within the housing, and a segmented Fresnel lens array is disposed within the housing behind the slots to direct infra-red energy from a monitored field of view to a sensor. The lens array includes a plurality of columns of lenslets, at least a portion of which have at least two lenslets disposed one above the other. Each column is aligned with a corresponding slot so as to direct infra-red energy from a monitored zone passing through the corresponding slot to a sensor. The configuration defines an optical path for infra-red energy emanating from a detection zone in the field of view, the optical path passing through a given slot and a lenslet aligned with the slot and on to a PIR sensor.
Abstract:
A quick-release mounting mechanism for a worklight enabling the worklight to be quickly and easily mounted on and demounted from a tripod support stand and enabling an individual worklight head to be quickly and easily mounted on and demounted from a base stand or other support member such as the handle of a spring clamp or other clamp member. The mounting mechanism includes a latch member on the worklight base or on an individual worklight head that cooperates with an actuator mounted in the support stand or other support member. The latch member is received in a hole in the support and the actuator is formed to engage a catch on the latch member when the worklight or individual worklight head is in position on the support. In particular, the actuator is mounted in the support for movement between a latching position and a release position, and the latch member and actuator are formed to engage one another when the actuator is in its latching position so as to hold the worklight or individual worklight head on the support. A spring arrangement in the support urges the actuator into its latching position, and the actuator is provided with an engagement member by which a user can urge the actuator into its release position for quick release of the worklight or the head from the support.
Abstract:
A motion detector based on mirrored optics for use in decorative lighting fixtures. The motion detector includes a mirror assembly that may be disposed within decorative elements such as saucers and chimneys that are common elements of lighting fixtures. Apertures are defined in the decorative element to admit infra-red radiation, which impinges on the mirror assembly. The mirror assembly comprises a plurality of opaque elongate members that are azimuthally spaced about a central longitudinal axis in such a way as to define an alternating sequence of open elongate slots and opaque elongate members. Each elongate member is formed with a mirror face on its inner surface which is generally facing the central longitudinal axis, and a PIR sensor is also disposed at the longitudinal axis. The elongate members and mirror faces define a plurality of detection zones in the motion detector field of view at two different vertical levels of view, each vertical level of view having a characteristic optical path associated with it. In a first optical path for monitoring the field of view in the far zones, infra-red radiation passes from an associated zone through one of the slots between two elongate members and is reflected from one of the mirror faces and concentrated onto the sensor. In the second characteristic optical path for monitoring the field of view in the near zones, infra-red radiation passes from an associated zone through one of the slots and on to the sensor without being deflected by any of the mirror faces. These two types of optical paths may be achieved in a full 360 degree zonal pattern for both the far zone and the near zone. The mirror assembly avoids the need for Fresnel lens optics.
Abstract:
A motion-activated light fixture having an aimable motion detector with a zonal configuration providing improved monitoring of the region behind the motion detector. In one embodiment the motion detector defines a first plurality of generally forward-looking detection zones for monitoring the region in front of and to the sides of the motion detector, the forward-looking detection zones having a side-to-side coverage angle of at most 180 degrees and having forward zones for monitoring the far region in front of the motion detector. A second plurality of detection zones for monitoring the region behind the motion detector forms a zonal pattern angulated with respect to the zones of the first plurality monitoring the far region. At least some of the detection zones of the second plurality extend generally in the backward direction although in some embodiments the motion detector head must be tilted down through a pre-established offset angle before the angulated zonal pattern begins to look backward. The motion detector may also have other detection zones forming zonal patterns monitoring intermediate regions. The backward looking detection zones are defined so as to look sufficiently downward that the amount they are shifted to angle upwards as the motion detector housing is angled downward is limited to a useful range so that individual detection zones are not rendered useless or detrimental by being aimed too high. Configurations of zonal patterns are provided for improved monitoring of the region behind the motion detector without compromising the ability to aim the motion detector's forward-looking far zones.
Abstract:
A small-sized hidden motion detector that can be incorporated in a decorative manner into a decorative lantern. The motion detector can be incorporated into lighting fixture designs not previously amenable to a hidden motion detector in the body of the lighting fixture. A small decorative motion detector housing is provided defining a compact interior region with a PIR sensor mounted inside and providing a sufficient optical pathway for a practical motion detector of wide angular field of view that can nevertheless fit inside commonly found small-sized decorative lantern elements. In one embodiment the motion detector is hidden in a small generally cylindrical decorative element of the sort that is found in a number of traditional decorative lantern designs and that has not previously been amenable to a hidden motion detector. Another embodiment includes a mechanism for mechanically adjusting the range and responsiveness of the motion detector notwithstanding the small size of the space available for housing the detector.
Abstract:
A motion detector with a lens-sensor mounting and adjustment arrangement that permits a user to adjust the effective range of the motion detector without altering the sensor's sensitivity settings. The mounting arrangement provides for relative movement of the sensor in relation to the lens matrix through an adjustment accessible to a user from outside the motion detector housing. In a disclosed embodiment a sensor is mounted on a printed circuit board that is disposed to slide on elongate rails. An expansible actuator assembly includes a threaded traveling member coupled to a threaded drive member, one end being accessible through the motion detector housing for engagement by a user and the other end being coupled to the printed circuit board so as to actuate movement of the sensor with respect to the lens.