Abstract:
Methods for electrochemically oxidizing aromatic aldehydes, such as furfural and furfural derivatives, to carboxylic acids in acidic solutions are provided. Also provided are electrochemical cells for carrying out the oxidation reactions. The electrochemical oxidations may be conducted in aqueous media at ambient pressure and mild temperatures.
Abstract:
Dual-functional energy storage systems that couple ion extraction and recovery with energy storage and release are provided. The dual-functional energy storage systems use ion-extraction and ion-recovery as charging processes. As the energy used for the ion extraction and ion recovery processes is not consumed, but rather stored in the system through the charging process, and the majority of the energy stored during charging can be recovered during discharging, the dual-functional energy storage systems perform useful functions, such as solution desalination or lithium-ion recovery with a minimal energy input, while storing and releasing energy like a conventional energy storage system.
Abstract:
Photoelectrochemical cells for the oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran are provided. Also provided are methods of using the cells to carry out the electrochemical and photoelectrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran.
Abstract:
Electrochemical cells and photoelectrochemical cells for the reduction of furfurals are provided. Also provided are methods of using the cells to carry out the reduction reactions. Using the cells and methods, furfurals can be converted into furan alcohols or linear ketones.
Abstract:
Dual-functional energy storage systems that couple ion extraction and recovery with energy storage and release are provided. The dual-functional energy storage systems use ion-extraction and ion-recovery as charging processes. As the energy used for the ion extraction and ion recovery processes is not consumed, but rather stored in the system through the charging process, and the majority of the energy stored during charging can be recovered during discharging, the dual-functional energy storage systems perform useful functions, such as solution desalination or lithium-ion recovery with a minimal energy input, while storing and releasing energy like a conventional energy storage system.
Abstract:
Methods for electrochemically oxidizing aromatic aldehydes, such as furfural and furfural derivatives, to carboxylic acids in acidic solutions are provided. Also provided are electrochemical cells for carrying out the oxidation reactions. The electrochemical oxidations may be conducted in aqueous media at ambient pressure and mild temperatures.
Abstract:
Electrochemical and photoelectrochemical cells for the oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran are provided. Also provided are methods of using the cells to carry out the electrochemical and photoelectrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran.
Abstract:
Electrochemical and photoelectrochemical cells for the oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran are provided. Also provided are methods of using the cells to carry out the electrochemical and photoelectrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran.
Abstract:
Electrochemical cells and methods for the reduction of aldehydes and ketones via selective hydrogenolysis of their carbonyl bonds are provided. The electrochemical cells and methods use zinc-containing electrocatalytic cathodes that promote electrochemical hydrogenolysis of the carbonyl bond of the aldehyde or ketone over hydrogenation in an acidic electrolyte solution. As a result, the carbonyl-groups of the aldehydes and ketones are reduced into alkyl groups with high relative selectivities.
Abstract:
Electrodialysis cell systems for water deionization is provided. Also provided are methods for using the electrodialysis cell systems. The cells use the forward and reverse reactions of a redox mediator and the combined operations of a deionization cell and an ion-accumulation cell to enable sustainable deionization with a significantly decreased operating voltage, relative to conventional deionization cells. The cells have applications in seawater desalination, water purification, and wastewater treatment.