Abstract:
A touch panel includes a cover glass, a flexible substrate, and a touch-sensing electrode structure. The flexible substrate is connected to the cover glass via a bonding layer, and the touch-sensing electrode structure is formed on the flexible substrate. The cover glass, the bonding layer, the flexible substrate and the touch-sensing electrode structure are arranged in order, with the flexible substrate being located between the touch-sensing electrode structure and the bonding layer.
Abstract:
A touch control device includes a touch area, a border area, a inductive coil, a proximity sensing unit, a near field communication unit, and a switch module. The touch area is for sensing touch input. The border area is located at periphery of the touch area. The inductive coil is located on the border area. The proximity sensing unit is for transmitting a driving signal to the inductive coil when being coupled to a first end of the inductive coil, and determining whether the inductive coil is close to an object according to a sensing signal generated by the inductive coil. The near field communication unit is for performing near field communication when being coupled to the first end and a second end of the inductive coil. The switch module is for controlling coupling statuses of the proximity sensing unit and the near field communication unit to the inductive coil.
Abstract:
A touch control device includes a touch area, a border area, a inductive coil, a proximity sensing unit, a near field communication unit, and a switch module. The touch area is for sensing touch input. The border area is located at periphery of the touch area. The inductive coil is located on the border area. The proximity sensing unit is for transmitting a driving signal to the inductive coil when being coupled to a first end of the inductive coil, and determining whether the inductive coil is close to an object according to a sensing signal generated by the inductive coil. The near field communication unit is for performing near field communication when being coupled to the first end and a second end of the inductive coil. The switch module is for controlling coupling statuses of the proximity sensing unit and the near field communication unit to the inductive coil.
Abstract:
A switchable touch stereoscopic image device includes a stereoscopic image generating module and a touch sensing module. The stereoscopic image generating module includes a first substrate, a second substrate, a light-path converting layer, driving electrodes and a common electrode. The first and second substrates are disposed corresponding to each other. The first substrate has a top surface. The second substrate has a top surface and a bottom surface facing the top surface of the first substrate. The light-path converting layer is disposed between the first and second substrates. The driving electrodes are disposed on the top surface of the first substrate. The common electrode is disposed on the bottom surface of the second substrate. The touch sensing module is disposed on a side of the second substrate of the stereoscopic image generating module and includes sensing electrodes disposed on a side of the top surface of the second substrate.
Abstract:
A display module includes a display device, a pivot member, and a reflection-mirror device. The display device includes a light splitting device and a monitor for displaying first and second images arranged alternately. The light splitting device is disposed at a position corresponding to a light exit side of the monitor for splitting the first and second images along first and second splitting directions respectively. The pivot member is disposed at a side of the display device. The reflection-mirror device is connected to the pivot member to be foldably pivoted to the side of the display device. The reflection-mirror device is for reflecting the first images split along the first splitting direction in a reflection direction when being unfolded relative to the display device. The reflection direction is relatively biased toward the monitor so as to form an included angle cooperatively with a normal of the monitor.
Abstract:
The present invention provides a touch panel and a touch display panel including an insulating layer, a first conductive pattern, and a second conductive pattern. The first conductive pattern and the second conductive pattern are respectively disposed on two sides of the insulating layer. The first conductive pattern includes a plurality of first electrode strips, wherein each first electrode strip includes a strip portion and a plurality of protrusion portions protruding from two sides of the strip portion. The second conductive pattern includes a plurality of second electrode strips, crossing the first electrode strips.
Abstract:
A display module includes a display device, a pivot member, and a reflection-mirror device. The display device includes a light splitting device and a monitor for displaying first and second images arranged alternately. The light splitting device is disposed at a position corresponding to a light exit side of the monitor for splitting the first and second images along first and second splitting directions respectively. The pivot member is disposed at a side of the display device. The reflection-mirror device is connected to the pivot member to be foldably pivoted to the side of the display device. The reflection-mirror device is for reflecting the first images split along the first splitting direction in a reflection direction when being unfolded relative to the display device. The reflection direction is relatively biased toward the monitor so as to form an included angle cooperatively with a normal of the monitor.
Abstract:
A method for adjustable outputting Gamma reference voltages includes generating a polarity control signal corresponding to one of plural predetermined display panel types, where a plurality of polarity control signals corresponding to the panel types of the plurality of display panels are different; generating a polarity signal corresponding to the display panel according to the polarity control signal; and generating and outputting a plurality of Gamma reference voltages according to the polarity signal. The plurality of Gamma reference voltages include a positive polarity Gamma reference voltage set and a negative polarity Gamma reference voltage set, and a voltage number of the positive polarity Gamma reference voltage set is the same as a voltage number of the negative polarity Gamma reference voltage set.
Abstract:
A touch panel includes a substrate, at least one first axis electrode, and at least one second axis electrode. The first axis electrode is disposed on the substrate and extends along a first direction. The first axis electrode includes at least one first mesh. The second axis electrode is disposed on the substrate and extends along a second direction. The second axis electrode includes at least one second mesh. The first axis electrode at least partially overlaps the second axis electrode along a direction perpendicular to the substrate. An aperture ratio of a region where the first axis electrode overlaps the second axis electrode is substantially equal to an aperture ratio of a region where the first axis electrode does not overlap the second axis electrode.
Abstract:
A capacitive touch panel including a substrate and a plurality of approach sensing units disposed on the substrate is provided. Each approach sensing unit comprises a first driving electrode, a second driving electrode, a first sensing electrode unit and a second sensing electrode unit. The first and second driving electrodes are arranged in parallel along an axis. The first and second sensing electrode units are arranged along an axis and sense the approach of an object to generate a first approach sensing signal and a second approach sensing signal, respectively. The first and second sensing electrode units are adjacent to each other and disposed between the first and second driving electrodes or the first and second driving electrodes are adjacent to each other and disposed between the first and second sensing electrode units.