摘要:
Segregants for magnetic recording layers and materials for intermediate layers underlying the magnetic recording layers are provided for improved heat assisted magnetic recording (HAMR) media. One such HAMR medium includes a substrate, a heat sink layer on the substrate, an underlayer on the heat sink layer, an intermediate layer of TiON, VON, CrON, TiOC, VOC, TiONC, and/or combinations thereof, on the underlayer, and a magnetic recording layer of FePt on the intermediate layer. The magnetic recording layer further includes three sublayers, each having a different segregant. The segregant of the first magnetic recording sublayer on the intermediate layer includes AgBN, AgCN, AgBNC, AgB2O3, AgMoO3, AgV2O5, B2O3, MoO3, V2O5, and/or combinations thereof.
摘要翻译:提供用于磁记录层的分离器和用于磁记录层下面的中间层的材料用于改进的热辅助磁记录(HAMR)介质。 一种这样的HAMR介质包括衬底,衬底上的散热层,散热层上的底层,TiON,VON,CrON,TiOC,VOC,TiONC和/或其组合的中间层, 和中间层上的FePt磁记录层。 磁记录层还包括三个子层,每个子层具有不同的分离。 中间层上的第一磁记录子层的分离体包括AgBN,AgCN,AgBNC,AgB 2 O 3,AgMoO 3,AgV 2 O 5,B 2 O 3,MoO 3,V 2 O 5和/或其组合。
摘要:
Systems and methods for providing thermal barrier bilayers for heat assisted magnetic recording (HAMR) media are provided. One such HAMR medium includes a substrate, a heat sink layer on the substrate, a thermal barrier bilayer on the heat sink layer, the bilayer comprising a first thermal barrier layer on the heat sink layer and an amorphous underlayer on the first thermal barrier layer, and a magnetic recording layer on the amorphous underlayer, wherein a thermal conductivity of the first thermal barrier layer is less than a thermal conductivity of the amorphous underlayer.
摘要:
A method and system provide a magnetic recording media usable in a heat assisted magnetic recording (HAMR) disk drive. The magnetic recording media includes a magnetic recording layer, a crystalline underlayer, and a crystalline heat sink layer. The crystalline underlayer is between the crystalline heat sink layer and the magnetic recording layer. The magnetic recording layer stores magnetic data. The crystalline underlayer has a first crystal structure. The crystalline heat sink layer has a second crystal structure.
摘要:
Aspects of the present invention are directed to heat assisted magnetic recording (HAMR) media with a CoCrPtB based capping layer design that is capable of reducing switching field distribution and boosting signal-to-noise ratio of HAMR media. In one embodiment of the invention, a recording medium for heat assisted magnetic recording (HAMR) includes a substrate, a magnetic recording layer on the substrate, and a capping layer on and directly in contact with the magnetic recording layer. The capping layer includes CoCrPtB.
摘要:
HAMR media with a magnetic recording layer having a reduced Curie temperature and methods of fabricating the HAMR media are provided. One such HAMR medium includes a substrate, a heat sink layer on the substrate, an interlayer on the heat sink layer, and a multi-layer magnetic recording layer on the interlayer. In such case, the multi-layer magnetic recording layer includes a first magnetic recording layer including an alloy selected from FePtX and CoPtX, where X is a material selected from the group consisting of Cu, Ni, and combinations thereof, a second magnetic recording layer on the first magnetic recording layer and having at least one material different from the materials of the first magnetic recording layer, and a third magnetic recording layer on the second magnetic recording layer and having at least one material different from the materials of the first magnetic recording layer.
摘要:
FePt-based heat assisted magnetic recording (HAMR) media comprising a thick granular FePt:C magnetic recording layer capable of maintaining a single layer film having desirable magnetic properties. According to one embodiment, the thick granular FePt:C magnetic recording layer comprises a plurality of carbon doped FePt alloy columnar grains, where the plurality of carbon doped FePt alloy columnar grains comprise a carbon gradient along the thickness of the hard magnetic recording layer.
摘要:
A heat-assisted magnetic recording (HAMR) medium having improved signal-to-noise ratio capabilities includes a high-temperature exchange break layer (EBL) inserted between magnetic recording layers, where the high-temperature exchange break layer material is capable of maintaining its chemical properties at temperatures exceeding 300° C. The high-temperature EBL may include a non-metallic compound including at least one of an oxide, a carbide, and a nitride.
摘要:
Systems and methods for providing heat assisted magnetic recording (HAMR) media configured to couple energy from a near field transducer (NFT) are provided. One such method includes providing a magnetic recording layer including an L10 ordered FePt or an L10 ordered CoPt, selecting a plurality of preselected parameters for a coupling layer, the preselected parameters including a material, a preselected deposition temperature, and a preselected thickness, and depositing the coupling layer directly on the magnetic recording layer using the preselected parameters such that the coupling layer has an extinction coefficient greater than 0.1.