Abstract:
An electrolyte for a lithium-sulphur battery, the electrolyte comprising a solution of at least one electrolyte salt in at least two aprotic solvents. The components of the solution may be selected so that the solution is eutectic or close to eutectic. Also disclosed is a lithium-sulphur battery including such an electrolyte. By using a eutectic mixture, the performance of the electrolyte and the battery at low temperatures is much improved.
Abstract:
A chemical source of electrical energy may include a positive electrode (cathode) made of an electrically conductive material, a mixture of lithium sulphide and sulphur, a permeable separator or membrane, and a negative electrode (anode) made of an electrically conductive material or a material that is able reversibly to intercalate lithium ions, wherein an aprotic electrolyte comprising at least one lithium salt in at least one solvent is provided between the electrodes.
Abstract:
A chemical source of electrical energy may include a positive electrode (cathode) made of an electrically conductive material, a mixture of lithium sulphide and sulphur, a permeable separator or membrane, and a negative electrode (anode) made of an electrically conductive material or a material that is able reversibly to intercalate lithium ions, wherein an aprotic electrolyte comprising at least one lithium salt in at least one solvent is provided between the electrodes.
Abstract:
An electrolyte for rechargeable batteries with a negative electrode of lithium or lithium containing alloys comprising: one or several non-aqueous organic solvents, one or several lithium salts and one or several additives increasing the cycle life of the lithium electrode. The electrolyte solution may comprise one or several solvents selected from the group comprising: tetrahydrofurane, 2-methyltetrahydrofurane, dimethylcarbonate, diethylcarbonate, ethylmethylcarbonate, methylpropylcarbonate, methylpropylpropyonate, ethylpropylpropyonate, methylacetate, ethylacetate, propylacetate, dimetoxyethane, 1,3-dioxalane, diglyme (2-methoxyethil ether), tetraglyme, ethylenecarbonate, propylencarbonate, γ-butyrolactone, and sulfolane. The electrolyte solution may further comprise at least one salt or several salts selected from the group consisting of lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate (LiAsF6), lithium perchlorate (LiClO4), lithium sulfonylimid trifluoromethane (LiN(CF3SO2)2)) and lithium trifluorosulfonate (CF3SO3Li) or other lithium salts or salts of another alkali metal or a mixture thereof. Also disclosed is an electrochemical cell or battery with an anode of metallic lithium or a lithium-containing alloy, and such an electrolyte.
Abstract translation:一种具有含锂或锂的合金负极的可再充电电池的电解液,包括:一种或多种非水有机溶剂,一种或多种锂盐和一种或多种添加剂,其增加锂电极的循环寿命。 电解质溶液可以包含选自四氢呋喃,2-甲基四氢呋喃,碳酸二甲酯,碳酸二乙酯,乙基甲基碳酸酯,碳酸甲基丙酯,丙基丙基丙酸甲酯,丙基丙酸乙酯,乙酸甲酯,乙酸乙酯,乙酸丙酯,二甲氧基乙烷,1,3-二氧杂环戊烷,二甘醇二 - 甲氧基乙醚),四甘醇二甲醚,碳酸亚乙酯,丙烯碳酸酯,γ-丁内酯和环丁砜。 所述电解质溶液还可以包含选自六氟磷酸锂(LiPF 6),六氟砷酸锂(LiAsF 6 N),高氯酸锂(LiCl 6 N 6) LiClO 4 S),磺酰亚胺三氟甲磺酸锂(LiN(CF 3 SO 2)2))和三氟磺酸锂( CF 3 3 SO 3 Li)或其它碱金属的锂盐或盐或其混合物。 还公开了具有金属锂或含锂合金的阳极的电化学电池或电池,以及这种电解质。
Abstract:
A rechargeable cell for operation at temperatures above from −40° C. to +120° C. which has a positive electrode comprising sulfur and/or organic and/or non-organic compounds (including polymer compounds) of sulfur as an electrode active material, and a negative electrode made of metal lithium or lithium alloys, and an electrolyte comprising a solution of one or more salts in one or more solvents.
Abstract:
A battery or chemical source of electric energy may include a positive electrode including sulphur or sulphur-based organic compounds, sulphur-based polymeric compounds or sulphur-based inorganic compounds as a depolarizer, a negative electrode made of metallic lithium or lithium-containing alloys, and an electrolyte including a solution of at least one salt in at least one aprotic solvent. In order to increase the specific energy, the chemical source of electric energy may be configured to generate soluble polysulphides in the electrolyte during discharge, and the quantities of sulphur in the depolariser and the volume of electrolyte may be selected such that, after discharge of the cathode in a first stage (to a potential of 2.1-1.9V), the concentration of soluble lithium polysulphides in the electrolyte is at least 70% of a saturation concentration of the lithium polysulphides in the electrolyte.
Abstract:
A chemical source of electrical energy may include a positive electrode (cathode) made of an electrically conductive material, a mixture of lithium sulphide and sulphur, a permeable separator or membrane, and a negative electrode (anode) made of an electrically conductive material or a material that is able reversibly to intercalate lithium ions, wherein an aprotic electrolyte comprising at least one lithium salt in at least one solvent is provided between the electrodes.
Abstract:
The invention provides for a method of discharging a chemical source of electric energy in two stages. The chemical source of electric energy comprises a positive electrode (cathode) including sulphur or sulphur-based organic compounds, sulphur-based polymeric compounds or sulphur-based inorganic compounds as a depolarizer, a negative electrode (anode) made of metallic lithium or lithium-containing alloys, and an electrolyte comprising a solution of at least one salt in at least one aprotic solvent. The method comprises the steps of configuring the chemical source of electric energy to generate soluble polysulphides in the electrolyte during a first stage of a two stage discharge process, and selecting the quantity of sulphur in the depolariser and the volume of electrolyte in a way that after the first stage discharge of the cathode, the concentration of the soluble polysulphides in the electrolyte is at least seventy percent (70%) of a saturation concentration of the polysulphides in the electrolyte.
Abstract:
A chemical source of electrical energy may include a positive electrode (cathode) made of an electrically conductive material, a mixture of lithium sulphide and sulphur, a permeable separator or membrane, and a negative electrode (anode) made of an electrically conductive material or a material that is able reversibly to intercalate lithium ions, wherein an aprotic electrolyte comprising at least one lithium salt in at least one solvent is provided between the electrodes.
Abstract:
The invention provides for a method of discharging a chemical source of electric energy in two stages. The chemical source of electric energy comprises a positive electrode (cathode) including sulphur or sulphur-based organic compounds, sulphur-based polymeric compounds or sulphur-based inorganic compounds as a depolarizer, a negative electrode (anode) made of metallic lithium or lithium-containing alloys, and an electrolyte comprising a solution of at least one salt in at least one aprotic solvent. The method comprises the steps of configuring the chemical source of electric energy to generate soluble polysulphides in the electrolyte during a first stage of a two stage discharge process, and selecting the quantity of sulphur in the depolariser and the volume of electrolyte in a way that after the first stage discharge of the cathode, the concentration of the soluble polysulphides in the electrolyte is at least seventy percent (70%) of a saturation concentration of the polysulphides in the electrolyte.