Abstract:
Systems and methods are described that facilitate reducing a number of patches used in characterizing a color halftone printer via a binary color printer model. A binary printer model involves printing of a fundamental set of color binary patterns that encompass all possible halftone outputs. A k-center clustering technique is employed to automatically find and eliminate redundancies in the initial set of binary color patterns. Once the number of patches is reduced to an acceptable number, a multiplicative reflectance model is applied that better approximates the physical process and therefore improves accuracy.
Abstract:
A method and apparatus are provided for compensating for spatial non-uniformities in a printer by deriving a true spatial non-uniformity tone response curve (TRC) that characterizes the printer in terms of color output variation for each addressable pixel location in a spatial range. The “true average” tone response curve is determined for a color channel. A prediction of the true response as a function of the spatial location is derived by printing and scanning a specially designed halftone-independent target of binary patterns. The predicted tone response curve for each color channel and halftone is predicted using a binary printer model, wherein the “predicted tone response curve” provides a model based approximation of the actual response for each addressable pixel location in the spatial range. Also stored is an “average predicted tone response” by averaging the “predicted tone response curve” over the spatial range of the printer.
Abstract:
The predicted tone response curve for each color channel and halftone is predicted using a binary printer model and stored, wherein the “predicted tone response curve” provides a model based approximation of the actual response for the printer for each addressable pixel location in the spatial range. Also stored is an “average predicted tone response” by averaging the “predicted tone response curve” over the spatial range of the printer. With the “true average” tone response curve, the “predicted tone response curve”, and the “average predicted tone response curve”, an estimate of the true tone response curve for the color channel can then be mathematically obtained, wherein the true tone response curve defines a predicted actual response for the printer for each addressable print location in the spatial range. The “predicted” and “average” tone response curves are obtained using the 2×2 binary printer model.
Abstract:
A method and system is disclosed for characterizing a color scanner comprising generating a halftone-independent target of color patches, printing the target on a color hardcopy device, measuring the target to obtain device-independent color values, scanning the target to obtain scanner color values, and building a scanner profile that relates scanned color values to device-independent color values.
Abstract:
A model-based halftone independent method for characterizing a printer equipped with a plural of halftone screens comprises: printing a target set of basic patches comprised of a fundamental binary pattern independent of a halftone screen; measuring true color printer response from the target set; modeling a halftone independent characterization of the printer with the mathematical transformation using the measured response; modeling a first halftone dependent characterization of the printer with the mathematical transformer to generate a first predicted result using a selected halftone screen; comparing a measured response of the printer using the halftone screen with the predicted result to define a correction factor corresponding to the halftone screen; and modeling a halftone dependent characterization of the printer using a predicted response of the fundamental binary pattern and the correction factor.
Abstract:
A method for compensating for color drift in a printer includes determining a first true tone response curve for a color channel when said printer is in a first state. A first estimated tone response curve for the color channel is also determined when said printer is in the first state. A second estimated tone response curve for the color channel is determined when the printer is in a second, color-drifted state relative to the first state. A second true tone response curve for the color channel is mathematically predicted using the first true tone response curve, the first estimated tone response curve, and the second estimated tone response curve. The first and second estimated tone response curves are estimated using a 2×2 printer model. A printing apparatus includes an image processing unit for implementing the color-drift correction process.
Abstract:
A method and apparatus are provided for compensating for spatial non-uniformities in a printer by deriving a true spatial non-uniformity tone response curve (TRC) that characterizes the printer in terms of color output variation for each addressable pixel location in a spatial range. The “true average” tone response curve is determined for a color channel. A prediction of the true response as a function of the spatial location is derived by printing and scanning a specially designed halftone-independent target of binary patterns. The predicted tone response curve for each color channel and halftone is predicted using a binary printer model, wherein the “predicted tone response curve” provides a model based approximation of the actual response for each addressable pixel location in the spatial range. Also stored is an “average predicted tone response” by averaging the “predicted tone response curve” over the spatial range of the printer.
Abstract:
Systems and methods are described that facilitate reducing a number of patches used in characterizing a color halftone printer via a binary color printer model. A binary printer model involves printing of a fundamental set of color binary patterns that encompass all possible halftone outputs. A k-center clustering technique is employed to automatically find and eliminate redundancies in the initial set of binary color patterns. Once the number of patches is reduced to an acceptable number, a multiplicative reflectance model is applied that better approximates the physical process and therefore improves accuracy.
Abstract:
Disclosed are systems and methods for halftone independent temporal color drift correction, particularly for correction in hi-addressability xerographic printers
Abstract:
A method for compensating for color drift in a printer includes determining a first true tone response curve for a color channel when said printer is in a first state. A first estimated tone response curve for the color channel is also determined when said printer is in the first state. A second estimated tone response curve for the color channel is determined when the printer is in a second, color-drifted state relative to the first state. A second true tone response curve for the color channel is mathematically predicted using the first true tone response curve, the first estimated tone response curve, and the second estimated tone response curve. The first and second estimated tone response curves are estimated using a 2×2 printer model. A printing apparatus includes an image processing unit for implementing the color-drift correction process.