摘要:
A method and system for training an automatic speech recognition system are provided. The method includes separating training data into speaker specific segments, and for each speaker specific segment, performing the following acts: generating spectral data, selecting a first warping factor and warping the spectral data, and comparing the warped spectral data with a speech model. The method also includes iteratively performing the steps of selecting another warping factor and generating another warped spectral data, comparing the other warped spectral data with the speech model, and if the other warping factor produces a closer match to the speech model, saving the other warping factor as the best warping factor for the speaker specific segment. The system includes modules configured to control a processor in the system to perform the steps of the method.
摘要:
A method and system for training an automatic speech recognition system are provided. The method includes separating training data into speaker specific segments, and for each speaker specific segment, performing the following acts: generating spectral data, selecting a first warping factor and warping the spectral data, and comparing the warped spectral data with a speech model. The method also includes iteratively performing the steps of selecting another warping factor and generating another warped spectral data, comparing the other warped spectral data with the speech model, and if the other warping factor produces a closer match to the speech model, saving the other warping factor as the best warping factor for the speaker specific segment. The system includes modules configured to control a processor in the system to perform the steps of the method.
摘要:
A method and apparatus for performing speech recognition are provided. A Vocal Tract Length Normalized acoustic model for a speaker is generated from training data. Speech recognition is performed on a first recognition input to determine a first best hypothesis. A first Vocal Tract Length Normalization factor is estimated based on the first best hypothesis. Speech recognition is performed on a second recognition input using the Vocal Tract Length Normalized acoustic model to determine an other best hypothesis. An other Vocal Tract Length Normalization factor is estimated based on the other best hypothesis and at least one previous best hypothesis.
摘要:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for assigning saliency weights to words of an ASR model. The saliency values assigned to words within an ASR model are based on human perception judgments of previous transcripts. These saliency values are applied as weights to modify an ASR model such that the results of the weighted ASR model in converting a spoken document to a transcript provide a more accurate and useful transcription to the user.
摘要:
Disclosed herein are systems, computer-implemented methods, and computer-readable storage media for recognizing speech by adapting automatic speech recognition pronunciation by acoustic model restructuring. The method identifies an acoustic model and a matching pronouncing dictionary trained on typical native speech in a target dialect. The method collects speech from a new speaker resulting in collected speech and transcribes the collected speech to generate a lattice of plausible phonemes. Then the method creates a custom speech model for representing each phoneme used in the pronouncing dictionary by a weighted sum of acoustic models for all the plausible phonemes, wherein the pronouncing dictionary does not change, but the model of the acoustic space for each phoneme in the dictionary becomes a weighted sum of the acoustic models of phonemes of the typical native speech. Finally the method includes recognizing via a processor additional speech from the target speaker using the custom speech model.
摘要:
Disclosed herein are systems, methods, and computer-readable storage media for selecting a speech recognition model in a standardized speech recognition infrastructure. The system receives speech from a user, and if a user-specific supervised speech model associated with the user is available, retrieves the supervised speech model. If the user-specific supervised speech model is unavailable and if an unsupervised speech model is available, the system retrieves the unsupervised speech model. If the user-specific supervised speech model and the unsupervised speech model are unavailable, the system retrieves a generic speech model associated with the user. Next the system recognizes the received speech from the user with the retrieved model. In one embodiment, the system trains a speech recognition model in a standardized speech recognition infrastructure. In another embodiment, the system handshakes with a remote application in a standardized speech recognition infrastructure.
摘要:
Disclosed herein are systems, methods, and computer-readable storage media for improving automatic speech recognition performance. A system practicing the method identifies idle speech recognition resources and establishes a supplemental speech recognizer on the idle resources based on overall speech recognition demand. The supplemental speech recognizer can differ from a main speech recognizer, and, along with the main speech recognizer, can be associated with a particular speaker. The system performs speech recognition on speech received from the particular speaker in parallel with the main speech recognizer and the supplemental speech recognizer and combines results from the main and supplemental speech recognizer. The system recognizes the received speech based on the combined results. The system can use beam adjustment in place of or in combination with a supplemental speech recognizer. A scheduling algorithm can tailor a particular combination of speech recognition resources and release the supplemental speech recognizer based on increased demand.
摘要:
A method and system of providing media content is disclosed. In a particular embodiment, the method includes receiving media content from a content source at a set-top box device. The media content includes video data having a first playback rate and audio data having the first playback rate. The method further includes transforming the audio data via a non-linear transformation to produce modified audio data having a second playback rate, modifying the video data to produce modified video data having the second playback rate, and synchronizing the modified audio data and the modified video data to produce modified media content having the second playback rate. A network-based media content storage device and associated logic to provide adjusted rate audio content are also disclosed.
摘要:
Systems and methods are provided for recognizing speech in a spoken dialogue system. The method includes receiving input speech having a pre-vocalic consonant or a post-vocalic consonant, generating at least one output lattice that calculates a first score by comparing the input speech to a training model to provide a result and distinguishing between the pre-vocalic consonant and the post-vocalic consonant in the input speech. A second score is calculated by measuring a similarity between the pre-vocalic consonant or the post vocalic consonant in the input speech and the first score. At least one category is determined for the pre-vocalic match or mismatch or the post-vocalic match or mismatch by using the second score and the results of the an automated speech recognition (ASR) system are refined by using the at least one category for the pre-vocalic match or mismatch or the post-vocalic match or mismatch.
摘要:
Disclosed are systems, methods and computer readable media for applying a multi-state barge-in acoustic model in a spoken dialogue system comprising the steps of (1) presenting a prompt to a user from the spoken dialog system. (2) receiving an audio speech input from the user during the presentation of the prompt, (3) accumulating the audio speech input from the user, (4) applying a non-speech component having at least two one-state Hidden Markov Models (HMMs) to the audio speech input from the user, (5) applying a speech component having at least five three-state HMMs to the audio speech input from the user, in which each of the five three-state HMMs represents a different phonetic category, (6) determining whether the audio speech input is a barge-in-speech input from the user, and (7) if the audio speech input is determined to be the barge-in-speech input from the user, terminating the presentation of the prompt.