Abstract:
A method of enabling “fast” suspend and “rapid” resume of virtual machines (VMs) employs a cache that is able to perform input/output operations at a faster rate than a storage device provisioned for the VMs. The cache may be local to a computer system that is hosting the VMs or may be shared cache commonly accessible to VMs hosted by different computer systems. The method includes the steps of saving the state of the VM to a checkpoint file stored in the cache and locking the checkpoint file so that data blocks of the checkpoint file are maintained in the cache and are not evicted, and resuming execution of the VM by reading into memory the data blocks of the checkpoint file stored in the cache.
Abstract:
Techniques for using a host-side cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, the hypervisor of a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The hypervisor can then process the I/O request by accessing a host-side cache that resides one or more cache devices distinct from the shared storage device, where the accessing of the host-side cache is transparent to the VM.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
Techniques for surfacing host-side flash storage capacity to a plurality of VMs running on a host system are provided. In one embodiment, the host system creates, for each VM in the plurality of VMs, a flash storage space allocation in a flash storage device that is locally attached to the host system. The host system then causes the flash storage space allocation to be readable and writable by the VM as a virtual flash memory device.
Abstract:
Techniques for using a cache to accelerate virtual machine (VM) I/O are provided. In one embodiment, a host system can intercept an I/O request from a VM running on the host system, where the I/O request is directed to a virtual disk residing on a shared storage device. The host system can then process the I/O request by accessing a cache that resides on one or more cache devices directly attached to the host system, where the accessing of the cache is transparent to the VM.
Abstract:
Techniques for surfacing host-side flash storage capacity to a plurality of VMs running on a host system are provided. In one embodiment, the host system creates, for each VM in the plurality of VMs, a flash storage space allocation in a flash storage device that is locally attached to the host system. The host system then causes the flash storage space allocation to be readable and writable by the VM as a virtual flash memory device.