摘要:
A method of identifying an object of interest can comprise obtaining first samples of an intensity distribution of one or more object of interest, obtaining second samples of an intensity distribution of confounder objects, transforming the first and second samples into an appropriate first space, performing dimension reduction on the transformed first and second samples, whereby the dimension reduction of the transformed first and second samples generates an object detector, transforming one or more of the digital images into the first space, performing dimension reduction on the transformed digital images, whereby the dimension reduction of the transformed digital images generates one or more reduced images, classifying one or more pixels of the one or more reduced images based on a comparison with the object detector, and identifying one or more objects of interest from the classified pixels.
摘要:
Systems and methods for assessing glaucoma loss using optical coherence topography. One method according to an aspect comprises receiving optical coherence image data and assessing functional glaucoma damage from retinal optical coherence image data. In an aspect, the systems and methods can map regions and layers of the eye to determine structural characteristics to compare to functional characteristics.
摘要:
Disclosed are systems and methods for image segmentation using convolutional networks. Image data comprising an image hypervolume can be received. The image hypervolume can be provided to a trained convolutional neural network (CNN). The CNN can output a segmentation of the image hypervolume.
摘要:
Systems and methods for assessing glaucoma loss using optical coherence topography. One method according to an aspect comprises receiving optical coherence image data and assessing functional glaucoma damage from retinal optical coherence image data. In an aspect, the systems and methods can map regions and layers of the eye to determine structural characteristics to compare to functional characteristics.
摘要:
Systems and methods for assessing glaucoma loss using optical coherence topography. One method according to an aspect comprises receiving optical coherence image data and assessing functional glaucoma damage from retinal optical coherence image data. In an aspect, the systems and methods can map regions and layers of the eye to determine structural characteristics to compare to functional characteristics.
摘要:
Systems and methods for assessing glaucoma loss using optical coherence topography. One method according to an aspect comprises receiving optical coherence image data and assessing functional glaucoma damage from retinal optical coherence image data. In an aspect, the systems and methods can map regions and layers of the eye to determine structural characteristics to compare to functional characteristics.
摘要:
Disclosed are systems and methods for image segmentation using convolutional networks. Image data comprising an image hypervolume can be received. The image hypervolume can be provided to a trained convolutional neural network (CNN). The CNN can output a segmentation of the image hypervolume.
摘要:
Systems and methods for assessing glaucoma loss using optical coherence topography. One method according to an aspect comprises receiving optical coherence image data and assessing functional glaucoma damage from retinal optical coherence image data. In an aspect, the systems and methods can map regions and layers of the eye to determine structural characteristics to compare to functional characteristics.
摘要:
A method of identifying an object of interest can comprise obtaining first samples of an intensity distribution of one or more object of interest, obtaining second samples of an intensity distribution of confounder objects, transforming the first and second samples into an appropriate first space, performing dimension reduction on the transformed first and second samples, whereby the dimension reduction of the transformed first and second samples generates an object detector, transforming one or more of the digital images into the first space, performing dimension reduction on the transformed digital images, whereby the dimension reduction of the transformed digital images generates one or more reduced images, classifying one or more pixels of the one or more reduced images based on a comparison with the object detector, and identifying one or more objects of interest from the classified pixels.
摘要:
Provided are methods for determining optimal features for classifying patterns or objects. Also provided are methods for image analysis. Further provided are methods for image searching.