Abstract:
A blade outer air seal for a gas turbine engine includes a wall, a forward hook, and an aft hook. The wall extends between the forward hook and the aft hook, which are adapted to mount the blade outer air seal to a casing of the gas turbine engine. The wall includes a cored passage extending along at least a portion of the wall. The cored passage extends radially and axially through a portion of the aft hook to communicate with one or more apertures along a trailing edge of the aft hook.
Abstract:
A seal assembly for a gas turbine engine includes an engine static structure. First and second members fluidly separate cavities from one another. A seal assembly is captured by the engine structure. The seal assembly includes a carrier and a seal that engages the first member. The second member is captured by the carrier.
Abstract:
An assembly for a turbine engine includes a turbine engine first component, a turbine engine second component and a flexible seal that is attached to the first component. The flexible seal at least partially seals a gap between the first component and the second component. The flexible seal includes a mount and a finger seal that sealingly engages the second component. The mount includes a boss that sealingly engages the first component.
Abstract:
An blade outer air seal support assembly includes a main support member configured to support a blade outer air seal. The main support member extends generally axially between a leading edge portion and a trailing edge portion. The leading edge portion is configured to be slidably received within a groove established by the blade outer air seal. A support tab extends radially inward from the main support member toward the blade outer air seal. The support tab configured to contact an extension of the blade outer air seal to limit relative axial movement of the blade outer air seal. A gusset spans between the support tab and the main support member.
Abstract:
A turbine shroud for incorporation in a turbine of a gas turbine engine has a plurality of butted shroud segments circumferentially arrayed to form a ring. Each of the shroud segments has an arcuate main shroud body portion, a radially inward extending annular flange attached to a first end of the main body portion, and a radially outward extending flange with a plurality of mounting apertures attached to a second end of the main shroud body portion. A first mounting aperture is sized smaller than an adjacent second mounting aperture in the radially outward extending flange.
Abstract:
A seal assembly for a gas turbine engine includes an engine static structure. First and second members fluidly separate cavities from one another. A seal assembly is captured by the engine structure. The seal assembly includes a carrier and a seal that engages the first member. The second member is captured by the carrier.
Abstract:
A component for a gas turbine engine according to an example of the present disclosure includes, among other things, a body having circumferential sides between a forward face and an aft face, each of the circumferential sides defining a mate face, an attachment member extending from the body, and a transition member adjacent to the body and the attachment member. The transition member and the body define a slot configured to receive a seal member. The transition member is sloped inwardly from one of the circumferential sides. A method of fabricating a gas turbine engine component is also disclosed.
Abstract:
A blade outer air seal for a gas turbine engine includes a first side surface, a second side surface, and a wall. The wall extends between the first side surface and the second side surface and has one or more holes formed therein. The holes are spaced from the first side surface and/or the second side surface and have areas between about 0.005% and 0.450% of a surface area of the blade outer air seal.
Abstract:
A component for a gas turbine engine according to an example of the present disclosure includes, among other things, a body having circumferential sides between a forward face and an aft face, each of the circumferential sides defining a mate face, an attachment member extending from the body, and a transition member adjacent to the body and the attachment member. The transition member and the body define a slot configured to receive a seal member. The transition member is sloped inwardly from one of the circumferential sides. A method of fabricating a gas turbine engine component is also disclosed.
Abstract:
An assembly for a turbine engine includes a turbine engine first component, a turbine engine second component and a flexible seal that is attached to the first component. The flexible seal at least partially seals a gap between the first component and the second component. The flexible seal includes a mount and a finger seal that sealingly engages the second component. The mount includes a boss that sealingly engages the first component.