Abstract:
The present invention relates to a fuel cell having an anode; a cathode opposing the anode; a first electrolyte membrane disposed between the anode and the cathode; a second electrolyte membrane disposed between the anode and the cathode; and an A/C junction electrode disposed between the first electrolyte membrane and the second electrolyte membrane, the A/C junction electrode comprising a first gas diffusion layer; a second gas diffusion layer; a current collector disposed between the first gas diffusion layer and the second gas diffusion layer; a first catalyst layer disposed between the first electrolyte membrane and the first gas diffusion layer; and a second catalyst layer disposed between the second electrolyte membrane and the second gas diffusion layer.
Abstract:
Methods and apparatus for generating electric power from a fuel cell are disclosed. In embodiments, a fuel cell for generating electric power includes: a first electrochemical cell including a first electrode and second electrode, wherein the first electrochemical cell is configured to generate a first stage electric power (P1) from a fuel source; and a bi-cell including a second electrochemical cell and third electrochemical cell, wherein the second electrochemical cell includes a third electrode in fluid communication with the fuel source, and a fourth electrode, wherein the second electrochemical cell is configured to generate hydrogen gas from the fuel source and transport the hydrogen gas to a third electrochemical cell, and wherein the third electrochemical cell includes the fourth electrode, and a fifth electrode in fluid communication with a second air source, wherein the fourth electrode is configured for use by the second electrochemical cell as a cathode for hydrogen generation, and by the third electrochemical cell as an anode for hydrogen oxidation, and wherein the third electrochemical cell is configured to generate a second stage electric power (P2).
Abstract:
The present invention relates to a fuel cell having an anode; a cathode opposing the anode; a first electrolyte membrane disposed between the anode and the cathode; a second electrolyte membrane disposed between the anode and the cathode; and an A/C junction electrode disposed between the first electrolyte membrane and the second electrolyte membrane, the A/C junction electrode comprising a first gas diffusion layer; a second gas diffusion layer; a current collector disposed between the first gas diffusion layer and the second gas diffusion layer; a first catalyst layer disposed between the first electrolyte membrane and the first gas diffusion layer; and a second catalyst layer disposed between the second electrolyte membrane and the second gas diffusion layer.
Abstract:
Methods and apparatus for generating electric power from a fuel cell are disclosed. In embodiments, a fuel cell for generating electric power includes: a first electrochemical cell including a first electrode and second electrode, wherein the first electrochemical cell is configured to generate a first stage electric power (P1) from a fuel source; and a bi-cell including a second electrochemical cell and third electrochemical cell, wherein the second electrochemical cell includes a third electrode in fluid communication with the fuel source, and a fourth electrode, wherein the second electrochemical cell is configured to generate hydrogen gas from the fuel source and transport the hydrogen gas to a third electrochemical cell, and wherein the third electrochemical cell includes the fourth electrode, and a fifth electrode in fluid communication with a second air source, wherein the fourth electrode is configured for use by the second electrochemical cell as a cathode for hydrogen generation, and by the third electrochemical cell as an anode for hydrogen oxidation, and wherein the third electrochemical cell is configured to generate a second stage electric power (P2).
Abstract:
An apparatus and method for generating low pressure hydrogen gas from fuel solutions (i.e., alcohols) without the use of an external power source or external heat source. The apparatus comprises (a) a first chamber for fuel storage having an aperture, (b) a second chamber for the temporary storage of hydrogen gas generated having an aperture, (c) a first electrochemical cell (Cell-1) and (d) a second electrochemical cell (Cell-2). Cell-2 is disposed between the first chamber and the second chamber so that its anode is in fluid communication with the first chamber and its cathode is in fluid communication with the second chamber. Cell-1 is disposed on the opposite side of the first chamber from Cell-2 so that the anode therein is in fluid communication with the first chamber, and the cathode therein is in fluid communication with an oxidizing agent. The first chamber is sandwiched between Cell-1 and Cell-2. An air convection window or like device making ambient air available to the apparatus via Cell-1 is positioned on the side of Cell-1 opposite the fuel chamber. In operation, fuel is provided to the first chamber, the anode of Cell-1 is connected to the cathode of Cell-2, and the cathode of Cell-1 is connected to the anode of Cell-2, and hydrogen gas is continuously generated from the hydrogen chamber. The present invention may be used at room temperature.