摘要:
Provided is a differential amplifier circuit with a small circuit size. When a differential voltage (Vinp−Vinn) is higher than a predetermined voltage, a PMOS transistor (4) is turned ON. At this time, a current source (12) is connected in parallel to a current source (11), and the current source (12) supplies a drive current to a differential amplifier circuit (10). In other words, the current sources (11 and 12), rather than only the current source (11), supply a total current (I11+I12) to the differential amplifier circuit (10) as the drive current. Accordingly, a slew rate of an output voltage (Vout) is increased. Two PMOS transistors and the current source (12) are simply required for controlling the slew rate of the output voltage (Vout), and hence the differential amplifier circuit (10) is small in circuit size.
摘要:
A Provided is a differential amplifier in which a current flowing into an output transistor may be adjusted to a constant value even when a voltage of a non-inverting input terminal changes. A current flowing through the differential amplifier circuit is controlled by a current source, a current value of which is changed depending on the voltage of the non-inverting input terminal.
摘要:
Provided is an operational amplifier capable of correcting an offset voltage of an element to be connected to an input terminal. The operational amplifier includes a main amplifier and an offset correction amplifier, which include input terminals connected in common. The main amplifier includes: a first transconductance amplifier for measurement; a second transconductance amplifier for offset correction; and a first capacitor connected to an input terminal of the second transconductance amplifier. The offset correction amplifier includes: a third transconductance amplifier for measurement; a fourth transconductance amplifier for offset correction; and a second capacitor connected to one input terminal of the fourth transconductance amplifier. An offset voltage adjustment circuit is provided to another input terminal of the fourth transconductance amplifier included in the offset correction amplifier.
摘要:
Provided is a differential amplifier circuit with a small circuit size. When a differential voltage (Vinp−Vinn) is higher than a predetermined voltage, a PMOS transistor (4) is turned ON. At this time, a current source (12) is connected in parallel to a current source (11), and the current source (12) supplies a drive current to a differential amplifier circuit (10). In other words, the current sources (11 and 12), rather than only the current source (11), supply a total current (I11+I12) to the differential amplifier circuit (10) as the drive current. Accordingly, a slew rate of an output voltage (Vout) is increased. Two PMOS transistors and the current source (12) are simply required for controlling the slew rate of the output voltage (Vout), and hence the differential amplifier circuit (10) is small in circuit size.
摘要:
Provided is a switching regulator for preventing generation of an inrush current flowing through a switching element of an output stage, which is provided in the switching regulator. A soft start control circuit (116) detects a current flowing through a PMOS transistor (104) serving as a switching element of an output stage. When the detected current is equal to or larger than a current limiting value for limiting the current flowing through the PMOS transistor (104), the soft start control circuit (116) controls the PMOS transistor (104) to be turned off. Accordingly, it is possible to prevent generation of the inrush current flowing through the PMOS transistor (104).
摘要:
A Provided is a differential amplifier in which a current flowing into an output transistor may be adjusted to a constant value even when a voltage of a non-inverting input terminal changes. A current flowing through the differential amplifier circuit is controlled by a current source, a current value of which is changed depending on the voltage of the non-inverting input terminal.
摘要:
Provided is a switching regulator having an improved power supply voltage variation response characteristic while maintaining the stability of an output voltage to oscillation. An output resistance of an error amplifier is adjusted by a power supply voltage variation response improving circuit to allow a gain of the error amplifier to change.
摘要:
Provided is a switching regulator having an improved power supply voltage variation response characteristic while maintaining the stability of an output voltage to oscillation. An output resistance of an error amplifier is adjusted by a power supply voltage variation response improving circuit to allow a gain of the error amplifier to change.
摘要:
Provided is an operational amplifier capable of correcting an offset voltage of an element to be connected to an input terminal. The operational amplifier includes a main amplifier and an offset correction amplifier, which include input terminals connected in common. The main amplifier includes: a first transconductance amplifier for measurement; a second transconductance amplifier for offset correction; and a first capacitor connected to an input terminal of the second transconductance amplifier. The offset correction amplifier includes: a third transconductance amplifier for measurement; a fourth transconductance amplifier for offset correction; and a second capacitor connected to one input terminal of the fourth transconductance amplifier. An offset voltage adjustment circuit is provided to another input terminal of the fourth transconductance amplifier included in the offset correction amplifier.
摘要:
Provided is a power supply switching circuit capable of efficiently supplying a desired voltage among a plurality of voltages to a load. In the case of a P-type semiconductor substrate, N-type MOS transistors are provided between a load and an AC adapter and between the load and a battery, and hence no parasitic diode exists between the load and the AC adapter or the battery, resulting in no current path due to the parasitic diode. Thus, when the AC adapter and the battery are connected to the power supply switching circuit, the N-type MOS transistor is turned off, whereby the current path between the battery and the load is cut off completely and the N-type MOS transistor is turned on. Accordingly, the battery cannot supply a voltage to the load while only the AC adapter can supply a voltage to the load.