Abstract:
The present invention provides an optical module having a pluggable configuration, which enables to latch with the cage when the optical connector is mated with the receptacle. The optical module of the present invention is secured in the cage by latching the latch of the cage and the projection of the module. The actuator of the module, having a slab protruding into the optical receptacle, is able to slide along the direction the module is inserted into the cage. When the optical connector is in the optical receptacle, the slab of the actuator butts the optical connector and is prohibited to slide, accordingly, the optical module can not released from the cage.
Abstract:
The present invention provides an optical transceiver that has an optical semiconductor device coupled to an optical fiber via an optical connector attached to an end of the optical fiber. The optical transceiver comprises at least one optical subassembly including the optical semiconductor device, an optical receptacle, a substrate, a frame and a cover. The optical semiconductor device optically couples to the optical fiber by mating the optical connector with the optical receptacle. The frame installs the optical subassembly, the optical receptacle, and the frame. According to the present invention, the optical receptacle is optionally positioned to the frame, so mechanical stress induced therebetween may be relaxed.
Abstract:
The present invention provides an optical module having a pluggable configuration, which enables to latch with the cage when the optical connector is mated with the receptacle. The optical module of the present invention is secured in the cage by latching the latch of the cage and the projection of the module. The actuator of the module, having a slab protruding into the optical receptacle, is able to slide along the direction the module is inserted into the cage. When the optical connector is in the optical receptacle, the slab of the actuator butts the optical connector and is prohibited to slide, accordingly, the optical module can not released from the cage.
Abstract:
The present invention provides an optical module having a pluggable configuration, which enables to latch with the cage when the optical connector is mated with the receptacle. The optical module of the present invention is secured in the cage by latching the latch of the cage and the projection of the module. The actuator of the module, having a slab protruding into the optical receptacle, is able to slide along the direction the module is inserted into the cage. When the optical connector is in the optical receptacle, the slab of the actuator butts the optical connector and is prohibited to slide, accordingly, the optical module can not released from the cage.
Abstract:
The present invention provides an optical transceiver with an optical subassembly optically coupling with an optical connector via a receptacle member, in which the optical subassembly is positioned to the housing of the transceiver without causing any mechanical stress. The optical subassembly is fixed to the receptacle member by inserting a sleeve thereof into an opening of the receptacle member. The receptacle member is assembled with the housing via the holder by adjusting the positional relation between the holder and the housing. Therefore, even when the subassembly is fixed to the receptacle member via the sleeve thereof, the subassembly can fit to the housing without causing any mechanical stress because the holder is interposed therebetween, which secures the heat dissipating path from the optical subassembly to the housing.
Abstract:
The present invention provides an optical transceiver that has an optical semiconductor device coupled to an optical fiber via an optical connector attached to an end of the optical fiber. The optical transceiver comprises at least one optical subassembly including the optical semiconductor device, an optical receptacle, a substrate, a frame and a cover. The optical semiconductor device optically couples to the optical fiber by mating the optical connector with the optical receptacle. The frame installs the optical subassembly, the optical receptacle, and the frame. According to the present invention, the optical receptacle is optionally positioned to the frame, so mechanical stress induced therebetween may be relaxed.
Abstract:
The present invention provides an optical module having a pluggable configuration, which enables to latch with the cage when the optical connector is mated with the receptacle. The optical module of the present invention is secured in the cage by latching the latch of the cage and the projection of the module. The actuator of the module, having a slab protruding into the optical receptacle, is able to slide along the direction the module is inserted into the cage. When the optical connector is in the optical receptacle, the slab of the actuator butts the optical connector and is prohibited to slide, accordingly, the optical module can not released from the cage.
Abstract:
The present invention provides an optical transceiver with an optical subassembly optically coupling with an optical connector via a receptacle member, in which the optical subassembly is positioned to the housing of the transceiver without causing any mechanical stress. The optical subassembly is fixed to the receptacle member by inserting a sleeve thereof into an opening of the receptacle member. The receptacle member is assembled with the housing via the holder by adjusting the positional relation between the holder and the housing. Therefore, even when the subassembly is fixed to the receptacle member via the sleeve thereof, the subassembly can fit to the housing without causing any mechanical stress because the holder is interposed therebetween, which secures the heat dissipating path from the optical subassembly to the housing.
Abstract:
A light-emitting element is mounted on a first conversion element mounting portion prepared on a lead frame and resin-molded by using a mold. In this case, a focusing lens whose optical axis coincides with the major surface of the light-emitting element and a coupling portion in which a sleeve is fitted are integrally molded at once to mold a transmission section and an electronic circuit section. When these member are fixed in housings, and a ferrule holding an optical fiber is inserted in the sleeve fitted in a recess portion of the coupling portion, the optical fiber is optically coupled to the major surface of the light-emitting element. At this time, when the distal end portion of the sleeve is brought into contact with the abutment portion in the coupling portion, the end face of the optical fiber always coincides with the major surface of the light-emitting element, thereby realizing reliable optical axis alignment.
Abstract:
The present invention provides an optical module with an improved temperature condition surrounding an opto-electronic device. The optical module of the present invention comprises an optical sub-assembly including an opto-electronic device, a first circuit board electrically connected to the optical sub-assembly, an electronic device mounted on the first circuit board, a lower housing for mounting the first circuit board, an upper housing for covering the circuit board and electronic device, and a metal cover for covering the upper housing. Constructed in the optical module are a first heat-dissipating path for dissipating heat from the electronic device to the cover via the upper housing, and a second heat-dissipating path, different from the first heat-dissipating path, for dissipating heat from the optical sub-assembly to the cover by way of the upper housing.