Abstract:
Provided is a method for controlling an image processing apparatus for generating and outputting frames different from each other in frequency component from an input frame include, detecting motion of the input frame by comparing the input frame with a frame before or after the input frame in terms of time, storing the input frame in a frame memory, and reading the input frame by a plurality of times to convert a frame rate of the input frame, generating the frames different from each other in frequency component from the frame whose frame rate has been converted, outputting the generated frames if the detected input frame is determined to be a moving image, and outputting the frame whose frame rate has been converted if the input frame is determined to be a still image.
Abstract:
Provided is a method for controlling an image processing apparatus for generating and outputting frames different from each other in frequency component from an input frame include, detecting motion of the input frame by comparing the input frame with a frame before or after the input frame in terms of time, storing the input frame in a frame memory, and reading the input frame by a plurality of times to convert a frame rate of the input frame, generating the frames different from each other in frequency component from the frame whose frame rate has been converted, outputting the generated frames if the detected input frame is determined to be a moving image, and outputting the frame whose frame rate has been converted if the input frame is determined to be a still image.
Abstract:
An image processing apparatus includes an identifier identifying, for each pixel in the frame image, minimum pixel values for each color component from pixel values of surrounding pixels for each color component. The surrounding pixels are positioned around the pixel. The identifier also identifies, as a common pixel value, a minimum value in the minimum pixel values identified for each color component. The apparatus further includes a generator generating a preprocessed image which can be obtained by replacing a pixel value of each pixel in the frame image with the common pixel value identified for the pixel by the identifier, a low pass filter generating a first subframe image by applying a low-pass filter to the preprocessed image, and a subtractor generating, as a second subframe image, a difference image between the frame image and the first subframe image.
Abstract:
An image processing apparatus comprises an identification unit configured to identify, for each pixel in the frame image, minimum pixel values for each color component from pixel values of surrounding pixels for each color component, wherein the surrounding pixels are positioned around the pixel, and identifying, as a common pixel value, a minimum value in the minimum pixel values identified for each color component; a generation unit configured to generate a preprocessed image which can be obtained by replacing a pixel value of each pixel in the frame image with the common pixel value identified for the pixel by the identification unit; a low-pass filtering unit configured to generate a first subframe image by applying a low-pass filter to the preprocessed image; a subtraction unit configured to generate, as a second subframe image, a difference image between the frame image and the first subframe image.
Abstract:
An image processing apparatus, which converts a frame rate by dividing an input frame into sub-frames and outputting the sub-frames, includes a minimum value filter unit, a low-pass filter processing unit, a generation unit, and a switching unit. In an input frame, the minimum value filter unit selects a maximum value of minimum values from the minimum values of pixel values in each horizontal line in a predetermined area including peripheral pixels of a processing target pixel, and performs pre-processing to replace the processing target pixel with the maximum value. The low-pass filter processing unit performs low-pass filter processing on the pre-processed input frame and generates a first sub-frame. The generation unit generates a second sub-frame from the first sub-frame and the input frame. The switching unit switches the first sub-frame and the second sub-frame at predetermined timing and outputs a sub-frame.
Abstract:
An image processing apparatus, which converts a frame rate by dividing an input frame into sub-frames and outputting the sub-frames, includes a minimum value filter unit, a low-pass filter processing unit, a generation unit, and a switching unit. In an input frame, the minimum value filter unit selects a maximum value of minimum values from the minimum values of pixel values in each horizontal line in a predetermined area including peripheral pixels of a processing target pixel, and performs pre-processing to replace the processing target pixel with the maximum value. The low-pass filter processing unit performs low-pass filter processing on the pre-processed input frame and generates a first sub-frame. The generation unit generates a second sub-frame from the first sub-frame and the input frame. The switching unit switches the first sub-frame and the second sub-frame at predetermined timing and outputs a sub-frame.
Abstract:
A flat display apparatus has a flat display panel; a frame that is installed on a rear face side of the display panel; a cover that covers at least a rear face side of the frame; and a high-voltage power supply that applies high voltage to the display panel. The high-voltage power supply has a plurality of cases, each of which encloses one or more transformers and rectifier circuits, and obtains high voltage by connecting the plurality of cases in series, and the plurality of cases are arranged in a space created between the frame and the cover so as to be disposed on a plane in parallel with a screen of the display panel.
Abstract:
To reduce flickering in driving distributed processing, an image processing apparatus which generates and outputs a plurality of sub frame images having different luminance patterns for each of a plurality of frame images included in input moving image data, includes a filtering unit configured to perform filter processing for the frame image, a setting unit configured to set a first coefficient A and a second coefficient B, a first generation unit configured to generate a first sub frame image, a second generation unit configured to generate a second sub frame image, and an output control unit configured to selectively output the first sub frame image and the second sub frame image at a predetermined timing.
Abstract:
An image processing apparatus which converts a frame rate by dividing an input frame into subframes and outputting the subframes, comprises, a preprocessing unit adapted to perform preprocessing of replacing a pixel value of a pixel of interest with a minimum pixel value of peripheral pixels of the pixel of interest in an input frame, a low-pass filter processing unit adapted to generate a first subframe by performing a low-pass filtering process on the input frame having undergone the preprocessing, a generating unit adapted to generate a second subframe from the first subframe and the input frame, and a switching unit adapted to output the first subframe and the second subframe by switching the first subframe and the second subframe at a predetermined timing.
Abstract:
A modulation-signal generator circuit generates a modulation signal having a time width corresponding to tone data that is input. The modulation-signal generator circuit includes an output section outputting the modulation signal and a control circuit. The output section is controlled so as to set the height value of the modulation signal to a predetermined height value during a first period in a period during which one modulation signal is output and is controlled so as to set the height value of the modulation signal to a height value higher than the predetermined height value during a second period. The control circuit sets a maximum time width which is available as the first period, and sets the maximum time width in accordance with a signal generated based on an instruction of a user or sets the maximum time width in accordance with a signal indicating the characteristics of the tone data.