Residual pressure measurement system for Fabry-Perot cavity of optical MEMS pressure sensor and method thereof

    公开(公告)号:US11473992B2

    公开(公告)日:2022-10-18

    申请号:US16641738

    申请日:2018-04-23

    Abstract: The present invention discloses a residual pressure measurement system for a MEMS pressure sensor with an F-P cavity and method thereof, the measurement system includes a low-coherence light source, a 3 dB coupler, a MEMS pressure sensor, an air pressure chamber, a thermostat, a pressure control system, a cavity length demodulator, an acquisition card and a computer. The measurement method comprises: performing cavity length measurement by using the reflecting light by the pressure control system at two temperatures, respectively, so as to calibrate the MEMS pressure sensor and establish a relationship between the absolute phase of a monochromatic frequency and the external pressure; performing linear fitting to the two measurement data to obtain all the external pressure when the cavity length of two measurement data are equal to each other, and substituting the theoretical equation for calculation to obtain the residual pressure under the flat condition of the diaphragm.

    Distributed optical fiber disturbance positioning system based on the asymmetric dual Mach-Zehnder interference, and positioning method thereof

    公开(公告)号:US10365126B2

    公开(公告)日:2019-07-30

    申请号:US15567076

    申请日:2016-10-27

    Abstract: A distributed optical fiber disturbance positioning system based on the asymmetric dual Mach-Zehnder interference, unlike traditional dual Mach-Zehnder distributed optical fiber disturbance sensing system, the present invention adopts two narrow-bandwidth optical sources (1a, 1b) and adopts corresponding DWDM (3a, 3b) before the detector (4a, 4b) to filter the backscatter noise of the optical fiber, and can solve the problems of having too low SNR due to backscatter influence when the sensing distance is long. The present invention also provides a positioning method for applying the system, which obtains the TFD of the disturbance frame signals by using the time-frequency analysis method based on the short-term average frequency, and takes the points near the point of maximum frequency as the effective signal segment for performing cross-correlation time delay estimation, thus obtaining the delay, and the disturbance position. The method of the invention positions the asymmetric disturbance frame signals in the systems, thus having a high positioning accuracy and reliability.

    Distributed measuring device and method for simultaneously measuring strain and temperature based on optical frequency domain reflection

    公开(公告)号:US10365088B2

    公开(公告)日:2019-07-30

    申请号:US15567078

    申请日:2016-10-27

    Abstract: The present invention discloses a distributed device for simultaneously measuring strain and temperature based on optical frequency domain reflection, comprising a tunable laser, a 1:99 beam splitter, a main interferometer system, a light source phase monitoring system based on an auxiliary interferometer, an acquisition device and a computer processing unit, wherein the main interferometer system comprises two Mach-Zehnder interferometers, and two optical fibers having different cladding diameters are arranged in parallel as sensing fibers. Due to the difference in temperature and strain coefficients of optical fibers of the same diameter, the temperature and strain values during changing the temperature and strain simultaneously can be obtained by matrix operation, thereby achieving an effect of eliminating cross sensitivity of temperature and strain sensing in optical frequency domain reflection.

Patent Agency Ranking