摘要:
A magnetic resonance imaging apparatus comprises static magnetic field generating means for generating a static magnetic field in an imaging space, a gradient magnetic field generating means for generating a gradient magnetic field in the imaging space, high-frequency magnetic field generating means for generating a high-frequency magnetic field so as to induce nuclear magnetic resonance in a subject placed in the imaging space, signal receiving means for detecting a nuclear magnetic resonance signal from the subject, signal processing means for reconstructing an image by using the detected nuclear magnetic resonance signal, display means for displaying the image, a table for placing the subject thereon to dispose the subject in the imaging means, and table moving means for moving the table on which the subject is placed. While moving the portions to be imaged of the subject continuously or stepwise in the imaging space and disposing the subject, a whole-body image of a large region of the subject is created. The magnetic resonance imaging apparatus further comprises means for detecting information on the displacement of the subject from a desired position and setting means for setting movement information on the table according to the displacement information. The table moving means moves the table according to the movement information set by the setting means to capture the whole-body image.
摘要:
A magnetic resonance imaging apparatus comprises object placing means for placing an object in an imaging space, translating means for translating the object in a given direction by translating the object placing means in the given direction continuously or step-wise, magnetic field generating means for exciting the desired region of the object by generating a static magnetic field, a gradient magnetic field in the imaging space, and a high-frequency magnetic field in the imaging space, signal detecting means for detecting a magnetic resonance signal from the object, and control unit for controlling the translating means, magnetic field generating means and the signal detecting means, and translating the object continuously or stepwise to a predetermined position at a predetermined speed so as to capture a magnetic resonance image of the object.The magnetic resonance imaging apparatus further comprises translation error detecting means for detecting an error of the position or the set value of the speed, and correcting means for correcting the error detected by the positional error detecting means.
摘要:
A magnetic resonance imaging apparatus comprises static magnetic field generating means for generating a static magnetic field in an imaging space, a gradient magnetic field generating means for generating a gradient magnetic field in the imaging space, high-frequency magnetic field generating means for generating a high-frequency magnetic field so as to induce nuclear magnetic resonance in a subject placed in the imaging space, signal receiving means for detecting a nuclear magnetic resonance signal from the subject, signal processing means for reconstructing an image by using the detected nuclear magnetic resonance signal, display means for displaying the image, a table for placing the subject thereon to dispose the subject in the imaging means, and table moving means for moving the table on which the subject is placed.While moving the portions to be imaged of the subject continuously or stepwise in the imaging space and disposing the subject, a whole-body image of a large region of the subject is created.The magnetic resonance imaging apparatus further comprises means for detecting information on the displacement of the subject from a desired position and setting means for setting movement information on the table according to the displacement information.The table moving means moves the table according to the movement information set by the setting means to capture the whole-body image.
摘要:
A magnetic resonance imaging apparatus comprises object placing means for placing an object in an imaging space, translating means for translating the object in a given direction by translating the object placing means in the given direction continuously or step-wise, magnetic field generating means for exciting the desired region of the object by generating a static magnetic field, a gradient magnetic field in the imaging space, and a high-frequency magnetic field in the imaging space, signal detecting means for detecting a magnetic resonance signal from the object, and control unit for controlling the translating means, magnetic field generating means and the signal detecting means, and translating the object continuously or stepwise to a predetermined position at a predetermined speed so as to capture a magnetic resonance image of the object.The magnetic resonance imaging apparatus further comprises translation error detecting means for detecting an error of the position or the set value of the speed, and correcting means for correcting the error detected by the positional error detecting means.
摘要:
An MRI apparatus and method are provided which are capable of properly setting imaging position of regions of a subject on a table and moving the table to the set positions, for imaging a wide range or the entire body range of the subject.
摘要:
A magnetic resonance imaging apparatus is configured to divide an object to be examined into a plurality of regions in a predetermined direction, set images of slice positions for each of the regions so that the slice positions are continuous in each region, obtain an image of each of the regions while moving the object stepwise, and acquire a plurality of image data having three types of categories for the region, the slice position and the imaging sequence. The magnetic resonance imaging apparatus selectively sets one of the three types of categories and rearranges and displays a plurality of images having the set category in the lengthwise direction or the lateral direction according to the two other categories that have not been selectively set.
摘要:
An magnetic resonance imaging apparatus includes: imaging means for dividing an object to be examined into a plurality of regions in a predetermined direction, setting images of slice positions for each of the regions so that the slice positions are continuous in each region, and imaging each of the regions while moving the object stepwise; and display means for acquiring a plurality of image data having three types of categories: the region, the slice position and the imaging sequence, and displaying the image data.The magnetic resonance imaging apparatus selectively sets one of the three types of categories and rearranges and displays a plurality of images having the set category in the lengthwise direction or the lateral direction according to the two other categories that have not been selectively set.
摘要:
Plural blood vessels different in blood flow velocity are depicted with high image quality in blood vessel imaging using PC-MRA method. For this purpose, the present invention performs a measurement of an echo signal based on application of a positive-polarity flow encode pulse and a measurement of an echo signal based on application of a negative-polarity flow encode pulse on an examinee with each of plural phase encodes while varying the flow encode, and a blood vessel image of the examinee is reconstructed by using the plural echo signals having different flow encode absolute values.
摘要:
An image with a desired contrast is obtained while suppressing body motion artifacts caused by both random motion and periodic motion of an object. In order to do so, an imaging sequence using a non-Cartesian sampling method is executed so as to synchronize with a biological signal only at the start time and a repetition time (TR), which is an execution interval between shots within the imaging sequence, is maintained. In addition, a time difference between a delay time and a start time of each shot is calculated, and a shot with a predetermined time difference or more is executed again after the TR time.
摘要:
An image with a desired contrast is obtained while suppressing body motion artifacts caused by both random motion and periodic motion of an object. In order to do so, an imaging sequence using a non-Cartesian sampling method is executed so as to synchronize with a biological signal only at the start time and a repetition time (TR), which is an execution interval between shots within the imaging sequence, is maintained. In addition, a time difference between a delay time and a start time of each shot is calculated, and a shot with a predetermined time difference or more is executed again after the TR time.