Abstract:
A wireless communication system comprising at least one base station in a communication cell, wherein the base station is equipped with at least one array antenna comprising at least two antenna ports which are connected to respective at least two corresponding antenna elements, wherein at least two of the at least two antenna elements have essentially the same polarization. The array antenna is arranged for communication via at least two antenna radiation lobes, each antenna radiation lobe communicating an information stream to at least one user equipment (UE) in the cell, wherein each antenna radiation lobe is individually controllable both in azimuth and elevation, whereby the communication of the information streams is optimized.
Abstract:
The present invention relates to a wireless communication arrangement comprising a node and a leaky cable running between a first and second converter arrangement. The first converter arrangement connects a first downlink signal and a second downlink signal to the cable, and converts the second downlink signal from a first frequency to a second frequency. The cable's other end is connected to the second converter arrangement which converts the second downlink signal from the second frequency to the first frequency. The second converter arrangement also converts a first uplink signal from a third frequency to a fourth frequency. The first converter arrangement receives the converted first uplink signal from the second converter arrangement and converts it from the fourth frequency to the third frequency. The first frequency is separated from the second frequency, and the third frequency is separated from the fourth frequency.
Abstract:
Systems and methods of a node in a wireless communication system with switchable antenna functions are provided. In one exemplary embodiment, a method by a controller for configuring a switching network may include configuring the switching network for a first mode of operation associated with multiple-input, multiple-output (MIMO) communications. Further, the method may include configuring the switching network for a second mode of operation associated with beamforming communications.
Abstract:
The present invention relates to a method for alignment of a first node with at least one secondary node in a wireless communication network. The first node includes first node antenna beams with corresponding designated pointing angles. For each such beam, the method comprises the steps of, for each secondary node: directing a first node antenna beam in its designated pointing angle; using a secondary node antenna beam where objects can generate signal reflections/diffractions; and detecting at least one signal property of reflected/diffracted signals. The method further comprises the steps: exchanging information between the nodes, regarding beam angles resulting in said signal property exceeding a corresponding threshold level; and selecting a first node beam angle and a secondary node beam angle from the beam angles for communication between the first node and each secondary node.
Abstract:
An antenna arrangement comprising at least a first and a second elongated structure, e.g., a coaxial cable, for guiding an electromagnetic wave is provided. Each of said structures comprises a plurality of radiation elements. The structures are positioned alongside each other in their longitudinal direction of extension forming a bundle. The elongated structures are arranged within the bundle such that the radial positions of said structures are alternated in the longitudinal direction of extension.
Abstract:
The invention relates to a wireless communication device 1 having an upper part 10 and a bottom part 11, the upper part 10 comprising one or more transmission antenna device(s) 12a, 12b; 15. The upper part 10 and the bottom part 11 are arranged movably in relation to each other, so that the bottom part 11, in use mode, is closer to the user than the upper part 10. The bottom part 11 comprises one or more reception antenna device(s) 14a, 14b, 14c, 14d.
Abstract:
A wireless communication system comprising at least one base station in a communication cell, wherein the base station is equipped with at least one array antenna comprising at least two antenna ports which are connected to respective at least two corresponding antenna elements, wherein at least two of the at least two antenna elements have essentially the same polarization. The array antenna is arranged for communication via at least two antenna radiation lobes, each antenna radiation lobe communicating an information stream to at least one user equipment (UE) in the cell, wherein each antenna radiation lobe is individually controllable both in azimuth and elevation, whereby the communication of the information streams is optimized.
Abstract:
The invention relates to a wireless communication device 1 having an upper part 10 and a bottom part 11, the upper part 10 comprising one or more transmission antenna device(s) 12a, 12b; 15. The upper part 10 and the bottom part 11 are arranged movably in relation to each other, so that the bottom part 11, in use mode, is closer to the user than the upper part 10. The bottom part 11 comprises one or more reception antenna device(s) 14a, 14b, 14c, 14d.
Abstract:
The present invention relates to a node in a wireless communication network. The node comprises an antenna arrangement which in turn comprises an array antenna. The array antenna comprises a first set of antenna elements forming a first antenna aperture, and a second set of antenna elements forming a second antenna aperture. The antenna arrangement further comprises a switching arrangement that is adapted to switch between a first mode of operation and a second mode of operation. In the first mode of operation, the first antenna aperture is arranged to generate a first antenna beam. In the second mode of operation, the first antenna aperture and the second antenna aperture are combined and arranged to generate a second antenna beam, the first antenna beam having a wider antenna beamwidth than the second antenna beam. The present invention also relates to a corresponding method.
Abstract:
A method for alignment of a first node with a second node in a wireless communication network. The method comprises directing a first node first antenna beam at a first pointing angle, using a second node antenna beam for scanning a first volume with objects being able to generate signal reflections/diffraction, detecting a first signal property of reflected/diffracted signals; and saving scan angles resulting in said first signal property exceeding a first threshold level. The method further comprises directing the second node antenna beam at said saved angles, and, for each such angle: using a first node second antenna beam for scanning; and detecting at least a second signal property of reflected/diffracted signals; exchanging information between the nodes comprising first node second antenna beam pointing direction angles resulting in said second signal property exceeding a second threshold level and said saved angles; and selecting angles for communication.