摘要:
Linear classification is used to determine the quality of acoustic physiological signal samples. A feature dataset is extracted from acoustic physiological signal samples of known quality (i.e., weak, noisy, good) acquired over a sampling period. A linear discriminant analysis is performed on the feature dataset to determine a direction of a linear classifier for the feature dataset. A classification error risk analysis is performed on the feature dataset to determine an offset of the linear classifier. The linear classifier is used to classify into reliability classes acoustic physiological signal samples acquired over an operating period. Information is selected for outputting using the assigned classifications, and is outputted.
摘要:
A method and system that reliably estimates a respiration parameter from an acoustic physiological signal without introducing undue complexity or intense computation. A median filter is applied to an energy envelope of the signal to remove heart sound “sparks” from the envelope and better isolate lung sounds. The median filter is followed by a low-pass filter that removes abrupt changes in the envelope caused by the median filter's nonlinearity. Various peak cross-checks are performed on an autocorrelation result generated from the envelope to confirm the reliability of the signal before an estimate of a respiration parameter is generated from the autocorrelation result.
摘要:
Physiological signal quality classification methods and systems designed to improve ambulatory monitoring. Physiological signals are classified as good, noisy or weak based on signal properties. Once classified, signals are processed differently depending on their classification in order to encourage reliance on reliable physiological data, discourage reliance on unreliable physiological data and induce action to improve signal quality. For example, for a good signal, physiological data may be extracted from the signal and displayed to a person being monitored. For a noisy signal, a noisy signal notification may be displayed to the person in lieu of extracted physiological data. For a weak signal, a weak signal notification may be displayed to the person in lieu of extracted physiological data. Moreover, a noisy or weak signal notification displayed to a person being monitored may be accompanied by a corrective action recommendation, such as “move to quieter environment” for a noisy signal or “check body placement of sensor” for a weak signal.
摘要:
The present invention provides adaptive lightweight acoustic signal classification for physiological monitoring applications. In an exemplary implementation, the total energy of a segment of an acoustic signal recording body sounds is first determined. For each of a plurality of signal classes (e.g., good, noisy, weak), the probability that the segment belongs to the signal class is then calculated using the total energy and profile data for the signal class. The segment is then assigned to one of the plurality of signal classes by reference to the probabilities. Physiological data are then selectively generated and outputted using the segment, depending on the assigned signal class, and the segment is selectively applied as feedback to update profile data for the assigned signal class.
摘要:
Physiological signal quality classification methods and systems for ambulatory monitoring. Physiological signals are classified as good, noisy or weak based on signal properties. Once classified, signals are processed differently depending on their classification For example, for a good signal, physiological data may be extracted from the signal and displayed to a person being monitored. For a noisy signal, a noisy signal notification may be displayed to the person in lieu of extracted physiological data. For a weak signal, a weak signal notification may be displayed to the person in lieu of extracted physiological data. Moreover, a noisy or weak signal notification displayed to a person being monitored may be accompanied by a corrective action recommendation, such as “move to quieter environment” for a noisy signal or “check body placement of sensor” for a weak signal.
摘要:
The present invention provides adaptive lightweight acoustic signal classification for physiological monitoring applications. In an exemplary implementation, the total energy of a segment of an acoustic signal recording body sounds is first determined. For each of a plurality of signal classes (e.g., good, noisy, weak), the probability that the segment belongs to the signal class is then calculated using the total energy and profile data for the signal class. The segment is then assigned to one of the plurality of signal classes by reference to the probabilities. Physiological data are then selectively generated and outputted using the segment, depending on the assigned signal class, and the segment is selectively applied as feedback to update profile data for the assigned signal class.
摘要:
Method and device for continual physiological monitoring in which the display of physiological parameter estimates is conditioned on conformance of the estimates with expectations. Current estimates of physiological parameters are compared with expectations for the current estimates determined using prior estimates of the physiological parameters. Nonconformance with expectations can result in display of information indicating present unavailability of an estimate for the physiological parameter. The method and device are adaptable for use with various types of monitored physiological parameters and various expectation metrics.
摘要:
A respiratory signal detection and time domain signal processing method and system classifies respiratory phases and determines respiratory time data useful in respiratory health determinations. The method and system analyze respiratory signals collected at multiple detection points at least one of which ensures that respiratory phases can be properly classified. Moreover, the method and system employ a time domain signal processing approach that facilitates determination of respiratory time data while realizing savings in computing power relative to frequency domain processing approaches.
摘要:
Methods and systems for particle characterization using a light fluctuation component of an optical sensor output signal. The use of the light fluctuation component enables particle characterization (e.g. provision of information on particle size, type and confidence) without requiring measurements at multiple wavelengths or multiple angles and using relatively lightweight calculations. The methods and systems allow integration of real-time airborne particle characterization into portable monitors. The methods and systems in some embodiments also use the output signal to further characterize particles through determination of particle density information.
摘要:
Lightweight wheeze detection methods and systems for portable respiratory health monitoring devices conserve computing resources in portable respiratory health monitoring devices by employing lightweight algorithm that calculates a partial STFT image of a respiratory signal that includes all data points necessary for wheeze detection but excludes many data points that are unnecessary for wheeze detection. The methods and systems provide substantial savings in computing resources while still ensuring every wheeze in a respiratory signal is detected.