Linear classification method for determining acoustic physiological signal quality and device for use therein
    1.
    发明申请
    Linear classification method for determining acoustic physiological signal quality and device for use therein 审中-公开
    用于确定声学生理信号质量的线性分类方法及其中使用的装置

    公开(公告)号:US20120029298A1

    公开(公告)日:2012-02-02

    申请号:US12804749

    申请日:2010-07-28

    IPC分类号: A61B5/00

    摘要: Linear classification is used to determine the quality of acoustic physiological signal samples. A feature dataset is extracted from acoustic physiological signal samples of known quality (i.e., weak, noisy, good) acquired over a sampling period. A linear discriminant analysis is performed on the feature dataset to determine a direction of a linear classifier for the feature dataset. A classification error risk analysis is performed on the feature dataset to determine an offset of the linear classifier. The linear classifier is used to classify into reliability classes acoustic physiological signal samples acquired over an operating period. Information is selected for outputting using the assigned classifications, and is outputted.

    摘要翻译: 线性分类用于确定声学生理信号样本的质量。 从采样周期获取的已知质量(即,弱,噪声,良好)的声学生理信号样本中提取特征数据集。 对特征数据集执行线性判别分析,以确定特征数据集的线性分类器的方向。 对特征数据集执行分类误差风险分析,以确定线性分类器的偏移。 线性分类器用于分类为运行期间获取的声学生理信号样本的可靠性等级。 选择使用分配的分类进行输出的信息,并输出。

    Method and system for reliable respiration parameter estimation from acoustic physiological signal
    2.
    发明申请
    Method and system for reliable respiration parameter estimation from acoustic physiological signal 审中-公开
    从声学生理信号估计可靠的呼吸参数的方法和系统

    公开(公告)号:US20110295139A1

    公开(公告)日:2011-12-01

    申请号:US12802044

    申请日:2010-05-28

    IPC分类号: A61B5/08

    摘要: A method and system that reliably estimates a respiration parameter from an acoustic physiological signal without introducing undue complexity or intense computation. A median filter is applied to an energy envelope of the signal to remove heart sound “sparks” from the envelope and better isolate lung sounds. The median filter is followed by a low-pass filter that removes abrupt changes in the envelope caused by the median filter's nonlinearity. Various peak cross-checks are performed on an autocorrelation result generated from the envelope to confirm the reliability of the signal before an estimate of a respiration parameter is generated from the autocorrelation result.

    摘要翻译: 一种从声学生理信号可靠地估计呼吸参数而不引入不适当复杂性或强烈计算的方法和系统。 将中值滤波器应用于信号的能量包络,以从信封中去除心脏声音“火花”,并更好地隔离肺部声音。 中值滤波器之后是低通滤波器,其消除由中值滤波器的非线性引起的包络的突然变化。 对从信封产生的自相关结果执行各种峰值交叉检查,以在从自相关结果生成呼吸参数的估计之前确认信号的可靠性。

    Physiological signal quality classification for ambulatory monitoring
    3.
    发明申请
    Physiological signal quality classification for ambulatory monitoring 有权
    门诊监护的生理信号质量分类

    公开(公告)号:US20110208009A1

    公开(公告)日:2011-08-25

    申请号:US12660458

    申请日:2010-02-25

    IPC分类号: A61B5/00 G08B23/00

    摘要: Physiological signal quality classification methods and systems designed to improve ambulatory monitoring. Physiological signals are classified as good, noisy or weak based on signal properties. Once classified, signals are processed differently depending on their classification in order to encourage reliance on reliable physiological data, discourage reliance on unreliable physiological data and induce action to improve signal quality. For example, for a good signal, physiological data may be extracted from the signal and displayed to a person being monitored. For a noisy signal, a noisy signal notification may be displayed to the person in lieu of extracted physiological data. For a weak signal, a weak signal notification may be displayed to the person in lieu of extracted physiological data. Moreover, a noisy or weak signal notification displayed to a person being monitored may be accompanied by a corrective action recommendation, such as “move to quieter environment” for a noisy signal or “check body placement of sensor” for a weak signal.

    摘要翻译: 生理信号质量分类方法和系统旨在改善流动监测。 基于信号特性,生理信号被分类为良好,嘈杂或弱。 一旦分类,信号根据其分类被不同地处理,以鼓励依赖可靠的生理数据,阻止对不可靠的生理数据的依赖并且引发提高信号质量的动作。 例如,对于良好的信号,可以从信号中提取生理数据并将其显示给被监视的人。 对于噪声信号,可以向该人显示噪声信号通知以代替所提取的生理数据。 对于弱信号,可以向人显示弱信号通知以代替提取的生理数据。 此外,向被监视人显示的嘈杂或弱信号通知可能伴随着纠正措施建议,例如用于噪声信号的“移动到更安静的环境”或用于弱信号的“检查身体放置传感器”。

    Adaptive lightweight acoustic signal classification for physiological monitoring
    4.
    发明授权
    Adaptive lightweight acoustic signal classification for physiological monitoring 有权
    自适应轻声音信号分类用于生理监测

    公开(公告)号:US09265477B2

    公开(公告)日:2016-02-23

    申请号:US12932130

    申请日:2011-02-17

    摘要: The present invention provides adaptive lightweight acoustic signal classification for physiological monitoring applications. In an exemplary implementation, the total energy of a segment of an acoustic signal recording body sounds is first determined. For each of a plurality of signal classes (e.g., good, noisy, weak), the probability that the segment belongs to the signal class is then calculated using the total energy and profile data for the signal class. The segment is then assigned to one of the plurality of signal classes by reference to the probabilities. Physiological data are then selectively generated and outputted using the segment, depending on the assigned signal class, and the segment is selectively applied as feedback to update profile data for the assigned signal class.

    摘要翻译: 本发明提供用于生理监测应用的自适应轻量级声信号分类。 在示例性实施例中,首先确定声信号记录体声音的一段的总能量。 对于多个信号类别(例如,良好,有噪声,弱)中的每一个,然后使用信号类的总能量和简档数据来计算段属于信号类的概率。 然后通过参考概率将段分配给多个信号类中的一个。 然后根据所分配的信号类别,使用该片段选择性地生成和输出生理数据,并且该片段被选择性地应用为反馈以更新所分配的信号类的简档数据。

    Physiological signal quality classification for ambulatory monitoring
    5.
    发明授权
    Physiological signal quality classification for ambulatory monitoring 有权
    门诊监护的生理信号质量分类

    公开(公告)号:US08554517B2

    公开(公告)日:2013-10-08

    申请号:US12660458

    申请日:2010-02-25

    IPC分类号: G06F19/00 H03F1/26

    摘要: Physiological signal quality classification methods and systems for ambulatory monitoring. Physiological signals are classified as good, noisy or weak based on signal properties. Once classified, signals are processed differently depending on their classification For example, for a good signal, physiological data may be extracted from the signal and displayed to a person being monitored. For a noisy signal, a noisy signal notification may be displayed to the person in lieu of extracted physiological data. For a weak signal, a weak signal notification may be displayed to the person in lieu of extracted physiological data. Moreover, a noisy or weak signal notification displayed to a person being monitored may be accompanied by a corrective action recommendation, such as “move to quieter environment” for a noisy signal or “check body placement of sensor” for a weak signal.

    摘要翻译: 生理信号质量分类方法和系统进行门诊监测。 基于信号特性,生理信号被分类为良好,嘈杂或弱。 一旦分类,信号根据其分类被不同地处理。例如,对于良好的信号,可以从信号中提取生理数据并将其显示给被监视的人。 对于噪声信号,可以向该人显示噪声信号通知以代替所提取的生理数据。 对于弱信号,可以向人显示弱信号通知以代替提取的生理数据。 此外,向被监视人显示的嘈杂或弱信号通知可能伴随着纠正措施建议,例如用于噪声信号的“移动到更安静的环境”或用于弱信号的“检查身体放置传感器”。

    Adaptive lightweight acoustic signal classification for physiological monitoring
    6.
    发明申请
    Adaptive lightweight acoustic signal classification for physiological monitoring 有权
    自适应轻声音信号分类用于生理监测

    公开(公告)号:US20120215454A1

    公开(公告)日:2012-08-23

    申请号:US12932130

    申请日:2011-02-17

    IPC分类号: G06F19/00 G01N29/00

    摘要: The present invention provides adaptive lightweight acoustic signal classification for physiological monitoring applications. In an exemplary implementation, the total energy of a segment of an acoustic signal recording body sounds is first determined. For each of a plurality of signal classes (e.g., good, noisy, weak), the probability that the segment belongs to the signal class is then calculated using the total energy and profile data for the signal class. The segment is then assigned to one of the plurality of signal classes by reference to the probabilities. Physiological data are then selectively generated and outputted using the segment, depending on the assigned signal class, and the segment is selectively applied as feedback to update profile data for the assigned signal class.

    摘要翻译: 本发明提供用于生理监测应用的自适应轻量级声信号分类。 在示例性实施例中,首先确定声信号记录体声音的一段的总能量。 对于多个信号类别(例如,良好,有噪声,弱)中的每个,然后使用信号类的总能量和简档数据来计算段属于信号类的概率。 然后通过参考概率将段分配给多个信号类中的一个。 然后根据所分配的信号类别,使用该片段选择性地生成和输出生理数据,并且该片段被选择性地应用为反馈以更新所分配的信号类的简档数据。

    Method and device for conditioning display of physiological parameter estimates on conformance with expectations
    7.
    发明申请
    Method and device for conditioning display of physiological parameter estimates on conformance with expectations 审中-公开
    用于调节显示符合预期的生理参数估计的方法和装置

    公开(公告)号:US20110301426A1

    公开(公告)日:2011-12-08

    申请号:US12802331

    申请日:2010-06-04

    IPC分类号: A61B5/00

    CPC分类号: A61B7/04 A61B7/003

    摘要: Method and device for continual physiological monitoring in which the display of physiological parameter estimates is conditioned on conformance of the estimates with expectations. Current estimates of physiological parameters are compared with expectations for the current estimates determined using prior estimates of the physiological parameters. Nonconformance with expectations can result in display of information indicating present unavailability of an estimate for the physiological parameter. The method and device are adaptable for use with various types of monitored physiological parameters and various expectation metrics.

    摘要翻译: 用于持续生理监测的方法和装置,其中生理参数估计的显示以估计与期望的一致性为条件。 将生理参数的当前估计与使用先前估计的生理参数确定的当前估计值的预期进行比较。 不符合预期可能导致显示表示生理参数的估计值的不可用性的信息。 该方法和装置适用于各种类型的监测生理参数和各种期望度量。

    Respiratory signal detection and time domain signal processing method and system
    8.
    发明申请
    Respiratory signal detection and time domain signal processing method and system 审中-公开
    呼吸信号检测和时域信号处理方法及系统

    公开(公告)号:US20100210962A1

    公开(公告)日:2010-08-19

    申请号:US12378476

    申请日:2009-02-13

    IPC分类号: A61B5/08

    摘要: A respiratory signal detection and time domain signal processing method and system classifies respiratory phases and determines respiratory time data useful in respiratory health determinations. The method and system analyze respiratory signals collected at multiple detection points at least one of which ensures that respiratory phases can be properly classified. Moreover, the method and system employ a time domain signal processing approach that facilitates determination of respiratory time data while realizing savings in computing power relative to frequency domain processing approaches.

    摘要翻译: 呼吸信号检测和时域信号处理方法和系统对呼吸相进行分类,并确定呼吸健康测定中有用的呼吸时间数据。 该方法和系统分析在多个检测点收集的呼吸信号,其中至少一个确保呼吸阶段可以被适当地分类。 此外,该方法和系统采用有助于确定呼吸时间数据的时域信号处理方法,同时实现相对于频域处理方法的计算能力的节省。

    Method and systems for particle characterization using optical sensor output signal fluctuation
    9.
    发明授权
    Method and systems for particle characterization using optical sensor output signal fluctuation 有权
    使用光学传感器输出信号波动进行粒子表征的方法和系统

    公开(公告)号:US08154723B2

    公开(公告)日:2012-04-10

    申请号:US12384368

    申请日:2009-04-03

    IPC分类号: G01N15/02 G01N21/00

    摘要: Methods and systems for particle characterization using a light fluctuation component of an optical sensor output signal. The use of the light fluctuation component enables particle characterization (e.g. provision of information on particle size, type and confidence) without requiring measurements at multiple wavelengths or multiple angles and using relatively lightweight calculations. The methods and systems allow integration of real-time airborne particle characterization into portable monitors. The methods and systems in some embodiments also use the output signal to further characterize particles through determination of particle density information.

    摘要翻译: 使用光学传感器输出信号的光波动分量进行粒子表征的方法和系统。 光波动分量的使用使得能够进行粒子表征(例如,提供关于粒度,类型和置信度的信息),而不需要在多个波长或多个角度进行测量并且使用相对较轻的计算。 该方法和系统允许将实时空中粒子表征集成到便携式监视器中。 在一些实施方案中的方法和系统还使用输出信号通过确定颗粒密度信息进一步表征颗粒。

    Lightweight wheeze detection methods and systems
    10.
    发明申请
    Lightweight wheeze detection methods and systems 有权
    轻度喘鸣检测方法和系统

    公开(公告)号:US20110230777A1

    公开(公告)日:2011-09-22

    申请号:US12661477

    申请日:2010-03-18

    申请人: Yongji Fu

    发明人: Yongji Fu

    IPC分类号: A61B5/08

    CPC分类号: A61B7/003

    摘要: Lightweight wheeze detection methods and systems for portable respiratory health monitoring devices conserve computing resources in portable respiratory health monitoring devices by employing lightweight algorithm that calculates a partial STFT image of a respiratory signal that includes all data points necessary for wheeze detection but excludes many data points that are unnecessary for wheeze detection. The methods and systems provide substantial savings in computing resources while still ensuring every wheeze in a respiratory signal is detected.

    摘要翻译: 用于便携式呼吸健康监测装置的轻度喘鸣检测方法和系统通过采用轻量化算法来节省便携式呼吸健康监测装置中的计算资源,所述轻量化算法计算包括喘鸣检测所需的所有数据点的呼吸信号的部分STFT图像,但不包括许多数据点 不需要喘鸣检测。 该方法和系统在计算资源方面提供了显着的节省,同时确保检测到呼吸信号中的每一个喘鸣。