Abstract:
A shake correcting system includes an optical imaging system, an image sensor, a movable unit comprising a movable frame in which the image sensor is fixed and a rotation restricting element, a base movably supporting the movable unit in a predetermined plane substantially orthogonal to an optical axis of the optical imaging system, a drive mechanism driving the movable unit relative to the base in directions vertical and orthogonal to the optical axis, a blur correcting function to correct blurs in a subject image due to shakes of the shake correcting system, a rotation restricting mechanism preventing rotation of the movable frame around the optical axis with the rotation restricting element, and a slide mechanism allowing the movable unit to be freely movable in the predetermined plane, and comprising a magnet, a magnetic plate attracted to the magnet, a spherical element supported between the magnetic plate and the magnet.
Abstract:
A shake correcting system includes an optical imaging system, an image sensor, a movable unit comprising a movable frame in which the image sensor is fixed and a rotation restricting element, a base movably supporting the movable unit in a predetermined plane substantially orthogonal to an optical axis of the optical imaging system, a drive mechanism driving the movable unit relative to the base in directions vertical and orthogonal to the optical axis, a blur correcting function to correct blurs in a subject image due to shakes of the shake correcting system, a rotation restricting mechanism preventing rotation of the movable frame around the optical axis with the rotation restricting element, and a slide mechanism allowing the movable unit to be freely movable in the predetermined plane, and comprising a magnet, a magnetic plate attracted to the magnet, a spherical element supported between the magnetic plate and the magnet.
Abstract:
An imaging apparatus includes a barrel unit having a photographic lens, an image pickup device configured to receive light through the photographic lens to capture a subject image, a movable unit configured to movably support the image pickup device in a direction perpendicular to a light-receiving axis of the subject image, a processing unit configured to process signals from the image pickup device, a flexible board configured to connect the image pickup device to the processing unit, and a positioning unit configured to position the flexible board.
Abstract:
The magnitude of magnetic attraction generated between an electromagnetic coil and a magnetic metal member (or an amount of electric current flowed to the electromagnetic coil) is controlled depending on a direction of acceleration (acceleration caused by the gravity (a gravitational acceleration) and acceleration caused by shake (shake acceleration)) working on an imaging apparatus. This magnetic attraction moves a second slider (including a CCD and a first slider) as a whole toward the electromagnetic coil. This movement brings two inclined surfaces (or fourth and fifth surfaces) of a shaft hole 10d into contact with a second guide shaft with no gap being interposed in between, and keeps the this contact condition.
Abstract:
A photographing apparatus which performs an image-blur suppression properly even through a computation device disposed in a main body of the photographing apparatus and a photographing element movable along an XY plane are electrically connected is provided according to the present invention. The image-blur suppression mechanism comprises a flexible base plate 20 including a second linear part 210 and a fourth linear part 212 which are plastically deformed along Z axial direction, meeting such a condition that an intersection line between a plane containing the second linear part 210 and the XY plane and an intersection line between a plane containing the fourth linear part 212 and the XY plane are intersected with XY axes, respectively.
Abstract:
A photographing apparatus which performs an image-blur suppression properly even through a computation device disposed in a main body of the photographing apparatus and a photographing element movable along an XY plane are electrically connected is provided according to the present invention. The image-blur suppression mechanism comprises a flexible base plate 20 including a second linear part 210 and a fourth linear part 212 which are plastically deformed along Z axial direction, meeting such a condition that an intersection line between a plane containing the second linear part 210 and the XY plane and an intersection line between a plane containing the fourth linear part 212 and the XY plane are intersected with XY axes, respectively.
Abstract:
An imaging apparatus includes a barrel unit having a photographic lens, an image pickup device configured to receive light through the photographic lens to capture a subject image, a movable unit configured to movably support the image pickup device in a direction perpendicular to a light-receiving axis of the subject image, a processing unit configured to process signals from the image pickup device, a flexible board configured to connect the image pickup device to the processing unit, and a positioning unit configured to position the flexible board.
Abstract:
The magnitude of magnetic attraction generated between an electromagnetic coil and a magnetic metal member (or an amount of electric current flowed to the electromagnetic coil) is controlled depending on a direction of acceleration (acceleration caused by the gravity (a gravitational acceleration) and acceleration caused by shake (shake acceleration)) working on an imaging apparatus. This magnetic attraction moves a second slider (including a CCD and a first slider) as a whole toward the electromagnetic coil. This movement brings two inclined surfaces (or fourth and fifth surfaces) of a shaft hole 10d into contact with a second guide shaft with no gap being interposed in between, and keeps the this contact condition.
Abstract:
In a tilt correction method, first information about a specific inclination of an object lens is acquired in response to an access request to an information recording medium. The specific inclination is obtained when the signal characteristic of a push-pull signal becomes a prescribed level in or near a target access area. Then, second information about the optimum inclination of the object lens is acquired for the target access area, based on the first information and tilt difference information representing a difference between a first inclination and a second inclination of the object lens defined in advance in a particular area on the information recording medium. The first inclination corresponds to an optimum reproduced signal from the particular area, and the second inclination is obtained when the signal characteristic of the push-pull signal from the particular area becomes the prescribed level. Finally, tilt correction information is estimated from the second information.
Abstract:
An optical disk device and a tilt correction method capable of high precision tilt correction with a smaller number of measurement positions are provided. Prior to data recording and reproduction, a number of measurement positions are set in the radial direction on an optical disk with intervals between two adjacent measurement positions shorter and shorter from the inner region to the peripheral region of the optical disk. The tilt at each of the measurement positions is measured, and the resulting tilt data are stored in a memory. The tilt data are used for making tilt corrections when recording or reproducing data on the optical disk.