Abstract:
The present invention relates to a method for producing acrolein, comprising step (1) of subjecting glycerol to dehydration reaction in the presence of a copper compound and a compound containing a heteroatom; step (2) of recovering acrolein generated in the dehydration reaction step (1); step (3) of recovering part or all of the copper compound which remained after the recovery of acrolein; step (4) of treating part or all of the recovered copper compound with at least one member selected from a group consisting of an oxidizing agent and acid; and step (5) of returning part or all of the copper compound treated in the above step to step (1); and a method for producing acrylic acid, comprising reacting acrolein obtained by the above method with molecular oxygen. The production method of the present invention enables efficient production of acrolein and acrylic acid from glycerol contained in plant oil and animal fats derived from carbon dioxide in air without depending on the oxidation of propylene derived from fossil resources.
Abstract:
The present invention relates to a method for producing acrolein, comprising step (1) of subjecting glycerol to dehydration reaction in the presence of a copper compound and a compound containing a heteroatom; step (2) of recovering acrolein generated in the dehydration reaction step (1); step (3) of recovering part or all of the copper compound which remained after the recovery of acrolein; step (4) of treating part or all of the recovered copper compound with at least one member selected from a group consisting of an oxidizing agent and acid; and step (5) of returning part or all of the copper compound treated in the above step to step (1); and a method for producing acrylic acid, comprising reacting acrolein obtained by the above method with molecular oxygen. The production method of the present invention enables efficient production of acrolein and acrylic acid from glycerol contained in plant oil and animal fats derived from carbon dioxide in air without depending on the oxidation of propylene derived from fossil resources.
Abstract:
A method for producing a platelet type slit-incorporated vapor grown carbon fiber by bringing raw materials into contact with a catalyst in a heating zone, wherein the raw materials contain at least ethylene as a carbon source, and a platelet type slit-incorporated vapor grown carbon fiber obtained by the method are disclosed.
Abstract:
The present invention concerns an oxygen reduction catalyst comprising composite particles in which primary particles of a titanium compound is dispersed into a carbon structure, wherein the composite particles have titanium, carbon, nitrogen and oxygen as constituent elements, and with regard to a ratio of number of atoms of each of the elements when titanium is taken as 1, a ratio of carbon is larger than 2 and 5 or less, a ratio of nitrogen is larger than 0 and 1 or less, and a ratio of oxygen is 1 or more and 3 or less, and an intensity ratio (D/G ratio) of D band peak intensity to G band peak intensity in a Raman spectrum is in the range of 0.4 to 1.0. The oxygen reduction catalyst according to the present invention has satisfactory initial performance and excellent start-stop durability.
Abstract:
The present invention concerns an oxygen reduction catalyst comprising composite particles in which primary particles of a titanium compound is dispersed into a carbon structure, wherein the composite particles have titanium, carbon, nitrogen and oxygen as constituent elements, and with regard to a ratio of number of atoms of each of the elements when titanium is taken as 1, a ratio of carbon is larger than 2 and 5 or less, a ratio of nitrogen is larger than 0 and 1 or less, and a ratio of oxygen is 1 or more and 3 or less, and an intensity ratio (D/G ratio) of D band peak intensity to G band peak intensity in a Raman spectrum is in the range of 0.4 to 1.0. The oxygen reduction catalyst according to the present invention has satisfactory initial performance and excellent start-stop durability.