Abstract:
A method capable of effectively improving a rejection of a reverse osmosis membrane without remarkably reducing a permeation flux, even if the membrane is seriously degraded. An aqueous solution containing a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 to less than 500, and a third organic compound having a molecular weight of 500 or more is passed through the reverse osmosis membrane. The first organic compound is preferably an amino acid or an amino acid derivative. The total concentration of the first organic compound and the second organic compound and the concentration of the third organic compound are each preferably 1 to 500 mg/L.
Abstract:
A method capable of effectively improving a rejection of a reverse osmosis membrane without remarkably reducing a permeation flux, even if the membrane is seriously degraded. An aqueous solution containing a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 to less than 500, and a third organic compound having a molecular weight of 500 or more is passed through the reverse osmosis membrane. The first organic compound is preferably an amino acid or an amino acid derivative. The total concentration of the first organic compound and the second organic compound and the concentration of the third organic compound are each preferably 1 to 500 mg/L.
Abstract:
An agent for increasing the rejection with a permeable membrane which comprises an ionic macromolecule having a weight-average molecular weight of 100,000 or greater; a process for increasing the rejection with a permeable membrane which comprises treating a permeable membrane with the agent; a permeable membrane which is treated in accordance with the process; and a process for water treatment which comprises using the permeable membrane are disclosed. By using the above agent, an increased rejection of inorganic electrolytes and organic compounds soluble in water can be maintained for a long time easily and safely at the location of the use of the membrane without extreme decrease in the flux of permeation in the membrane separation using a selective permeable membrane such as a nano filtration membrane and a reverse osmosis membrane.
Abstract:
An agent for increasing the rejection with a permeable membrane which comprises an ionic macromolecule having a weight-average molecular weight of 100,000 or greater; a process for increasing the rejection with a permeable membrane which comprises treating a permeable membrane with the agent; a permeable membrane which is treated in accordance with the process; and a process for water treatment which comprises using the permeable membrane are disclosed. By using the above agent, an increased rejection of inorganic electrolytes and organic compounds soluble in water can be maintained for a long time easily and safely at the location of the use of the membrane without extreme decrease in the flux of permeation in the membrane separation using a selective permeable membrane such as a nano filtration membrane and a reverse osmosis membrane.
Abstract:
This invention provides a method for improving the blocking rate of a permeable membrane, which can reduce a lowering in permeation flux of the permeable membrane to improve the blocking rate, particularly against organic matter, and thus to realize a high organic matter removing effect and stable treatment, and a permeable membrane, a permeable membrane treatment method, and a permeable membrane apparatus. A blocking rate improving agent of a hydrophilic polymer free from a hydrophobic group having 8 or more carbon atoms is supplied to a primary side of a permeable membrane module to deposit the blocking rate improving agent onto the permeable membrane and thus to treat the permeable membrane with the blocking rate improving agent. Thereafter, a modification agent of a water soluble polymer containing a hydrophobic group having 8 or more carbon atoms is supplied to deposit and modified the modification agent onto the permeable membrane treated with the blocking rate improving agent to further improve the blocking rate.
Abstract:
Disclosed are a method for further purifying ultrapure water, according to which any impurities in ultrapure water can be stably removed to a high degree within a small space over a prolonged period; and an apparatus therefor. Ultrapure water introduced into an ultrapure-water purifying apparatus 10 passes through an ion exchange resin layer 5 in a lower chamber 1a. During this process, metal ions, for example, in the ultrapure water are removed by the ion exchange resin. The ultrapure water then passes through a perforated plate 4, flows into an upper chamber 1b, and permeates an ion exchange filter 6. During this process, metal ions and other impurities remaining unremoved by the ion exchange resin layer 5 are removed. Specifically, metal ions are removed to a certain extent by the ion exchange resin, so that it is enough for the ion exchange filter provided downstream thereof to remove an extremely small amount of metal ions. Consequently, reaching of the ion exchange filter to breakthrough within a short period can be prevented, thereby attaining further purification of ultrapure water over a prolonged period of time.
Abstract:
Disclosed are a method for further purifying ultrapure water, according to which any impurities in ultrapure water can be stably removed to a high degree within a small space over a prolonged period; and an apparatus therefor. Ultrapure water introduced into an ultrapure-water purifying apparatus 10 passes through an ion exchange resin layer 5 in a lower chamber 1a. During this process, metal ions, for example, in the ultrapure water are removed by the ion exchange resin. The ultrapure water then passes through a perforated plate 4, flows into an upper chamber 1b, and permeates an ion exchange filter 6. During this process, metal ions and other impurities remaining unremoved by the ion exchange resin layer 5 are removed. Specifically, metal ions are removed to a certain extent by the ion exchange resin, so that it is enough for the ion exchange filter provided downstream thereof to remove an extremely small amount of metal ions. Consequently, reaching of the ion exchange filter to breakthrough within a short period can be prevented, thereby attaining further purification of ultrapure water over a prolonged period of time.