Abstract:
An electronic device includes a transmitter with a baseband input for a baseband signal, a mixer downstream from the baseband input, and a phase-locked loop (PLL) having a voltage controlled oscillator (VCO) and a phase detector coupled thereto, the VCO coupled to the mixer. A power amplifier is downstream from the mixer, and generates at least one aggressing signal that would otherwise generate an output pull of the VCO, causing transmit distortion on a transmit signal. A receiver is coupled to the power amplifier and has a sense input configured to receive the transmit signal. A VCO pulling compensation circuit is coupled to the baseband input and is configured to compensate the at least one baseband signal for the transmit distortion based upon the sensed transmit signal.
Abstract:
An inductive coupling apparatus for modifying an incoming radio frequency (RF) signal includes an inductive element for modifying the incoming RF signal in accordance with a coupled impedance characteristic of the inductive element. A variable impedance circuit includes an output electrically coupled to the inductive element. A low pass delta sigma modulator is coupled to the variable impedance circuit and digitally controls the output of the variable impedance circuit, the coupled impedance of the inductive element being adjusted based on the output of the variable impedance circuit.
Abstract:
A radio transceiver including a transmitter and a receiver. A filter coupled to an output of the transmitter, the filter has one or more inductors and one or more capacitors, where the filter is tuned by varying one or more capacitance values of the one or more capacitors in the filter to tune the filter. The one or more capacitors are Barium Strontium Titanate (BST) ceramic integrated capacitors that are each tuned by application of a bias voltage thereto. A filter tuner circuit is configured to apply the bias voltage to the one or more capacitors, where the bias voltage is initially established as a stored initial value, and where the bias voltage is refined by a proportional-integral-derivative (PID) controller configured to optimize a power within the transceiver. This abstract is not to be considered limiting since various implementations may incorporate more, fewer or different elements.
Abstract:
An inductive coupling apparatus for modifying an incoming radio frequency (RF) signal includes an inductive element. A variable impedance circuit includes an output electrically coupled to the inductive element. A band-pass delta sigma modulator is coupled to the variable impedance circuit and digitally controls the output of the variable impedance circuit. The incoming RF signal is modified as the coupled impedance of the inductive element is adjusted in accordance with the output of the variable impedance circuit.
Abstract:
An antenna apparatus for backscattering an incoming radio frequency (RF) signal includes an antenna for backscattering the incoming RF signal in accordance with a reflection coefficient characteristic of the antenna. A variable impedance circuit includes an output electrically connected to the antenna. A low pass delta sigma modulator is coupled to the variable impedance circuit and digitally controls the output of the variable impedance circuit, such that the reflection coefficient of the antenna is adjusted based on the output of the variable impedance circuit.
Abstract:
The invention is directed at a hybrid modulation apparatus which combines a polar modulation circuit and a linear modulation circuit. The hybrid apparatus allows a communications device to function as a polar or a linear modulation circuit with less components as the output of the linear modulation circuit is an input of the polar modulation circuit.