Abstract:
The present disclosure relates to a method and apparatus for accurate RC extraction. A pattern database is configured to store layout patterns and their associated 3D extraction parameters. A pattern-matching tool is configured to partition a design into a plurality of patterns, and to search the pattern database for a respective pattern and associated 3D extraction parameters. If the respective pattern is already stored in the pattern database, then the associated 3D extraction parameters stored in the database are assigned to the respective pattern without the need to extract the respective pattern. If the respective pattern is not stored in the pattern database, then the extraction tool extracts the pattern and stores its associated 3D extraction parameters in the pattern database for future use. In this manner a respective pattern is extracted only once for a given design or plurality of designs. Moreover, the extraction result may be applied multiple times for a given design simultaneously, speeding up computation time. The extraction result may also be applied to a plurality of designs simultaneously.
Abstract:
A method and a corresponding system for analyzing process variation and parasitic resistance-capacitance (RC) elements in an interconnect structure of an integrated circuit (IC) are provided. First descriptions of parasitic RC elements in an interconnect structure of an IC are generated. The first descriptions describe the parasitic RC elements respectively at a typical process corner and a peripheral process corner. Sensitivity values are generated at the peripheral process corner from the first descriptions. The sensitivity values respectively quantify how sensitive the parasitic RC elements are to process variation. The sensitivity values are combined into a second description of the parasitic RC elements that describes the parasitic RC elements as a function of a process variation parameter. Simulation is performed on the second description by repeatedly simulating the second description with different values for the process variation parameter.
Abstract:
A method and a corresponding system for analyzing process variation and parasitic resistance-capacitance (RC) elements in an interconnect structure of an integrated circuit (IC) are provided. First descriptions of parasitic RC elements in an interconnect structure of an IC are generated. The first descriptions describe the parasitic RC elements respectively at a typical process corner and a peripheral process corner. Sensitivity values are generated at the peripheral process corner from the first descriptions. The sensitivity values respectively quantify how sensitive the parasitic RC elements are to process variation. The sensitivity values are combined into a second description of the parasitic RC elements that describes the parasitic RC elements as a function of a process variation parameter. Simulation is performed on the second description by repeatedly simulating the second description with different values for the process variation parameter.
Abstract:
The present disclosure relates to a method and apparatus for accurate RC extraction. A pattern database is configured to store layout patterns and their associated 3D extraction parameters. A pattern-matching tool is configured to partition a design into a plurality of patterns, and to search the pattern database for a respective pattern and associated 3D extraction parameters. If the respective pattern is already stored in the pattern database, then the associated 3D extraction parameters stored in the database are assigned to the respective pattern without the need to extract the respective pattern. If the respective pattern is not stored in the pattern database, then the extraction tool extracts the pattern and stores its associated 3D extraction parameters in the pattern database for future use. In this manner a respective pattern is extracted only once for a given design or plurality of designs. Moreover, the extraction result may be applied multiple times for a given design simultaneously, speeding up computation time. The extraction result may also be applied to a plurality of designs simultaneously.