Abstract:
An image sensor structure is provided. The image sensor device structure includes a substrate, and the substrate includes an array region and a peripheral region. The image sensor device structure includes an anti-reflection layer formed on the substrate and a buffer layer formed on the anti-reflection layer. The image sensor device structure includes a first etch stop layer formed on the buffer layer and a metal grid structure formed on the first etch stop layer. The image sensor device structure also includes a dielectric layer formed on the metal grid structure.
Abstract:
A method includes depositing a magnetic layer over a dielectric layer, and etching a first portion of the magnetic layer, in which a second portion of the magnetic layer that is directly under the first portion of the magnetic layer remains over the dielectric layer after etching the first portion of the magnetic layer. The second portion of the magnetic layer is etched.
Abstract:
An FSI image sensor device structure is provided. The FSI image sensor device structure includes a pixel region formed in a substrate and a storage region formed in the substrate and adjacent to the pixel region. The FSI image sensor device structure further includes a first gate structure formed over the storage region and a metal shield structure formed over the first gate structure. The FSI image sensor device structure further includes a conductive structure formed adjacent to the first gate structure. In addition, the conductive structure is electrically connected to the metal shield structure through a via.
Abstract:
An FSI image sensor device structure is provided. The FSI image sensor device structure includes a pixel region formed in a substrate and a storage region formed in the substrate and adjacent to the pixel region. The FSI image sensor device structure includes a storage gate structure formed over the storage region, and the storage gate structure includes a top surface and sidewall surfaces. The FSI image sensor device structure includes a metal shield structure formed on the storage gate structure, and the top surface and the sidewall surfaces of the storage gate structure are covered by the metal shield structure.
Abstract:
Structures and formation methods of an image sensor structure are provided. The image sensor structure is provided. The image sensor structure includes a substrate, a photodiode component in the substrate, and a grid structure over the substrate. The grid structure includes a bottom dielectric element over the substrate, a reflective element over the bottom dielectric element, and an upper dielectric element over the reflective element. The reflective element has a sidewall which is anti-corrosive in a basic condition and an acidic condition. The image sensor structure also includes a color filter element over the substrate and surrounded by the grid structure. The color filter element is aligned with the photodiode component.
Abstract:
The present disclosure describes a semiconductor device having radiation-sensing regions separated by trench isolation structures. The semiconductor structure includes a first trench fill structure on a substrate and a second trench fill structure on the substrate. The first trench fill structure has a first width and a convex bottom surface. The second trench fill structure has a concave bottom surface and a second width greater than the first width.
Abstract:
A method for fabricating a magnetic core includes depositing a magnetic layer on a dielectric layer, forming a first photoresist layer on the magnetic layer and patterning the first photoresist layer, etching the magnetic layer through the patterned first photoresist layer, in which a first section of the magnetic layer exposed by the first photoresist layer remains on the dielectric layer after the magnetic layer is etched, removing the patterned first photoresist layer, forming a second photoresist layer on the magnetic layer and patterning the second photoresist layer, etching the magnetic layer through the patterned second photoresist layer, and removing the second photoresist layer.
Abstract:
A magnetic core includes a center section having a substantially uniform thickness, and an edge section connected to and surrounding the center section. The edge section includes a bottom portion and a top portion disposed on the bottom portion, in which the bottom portion has a gradual side surface since the top portion has a steep side surface. The profile of the magnetic core can be more rectangular thereby providing better inductor performance.