摘要:
Aqueous gel drug delivery compositions and medical devices, useful for treating an eye condition, having hyperosmotic, iso-osmotic or hypo-osmotic characteristics in the gel state, are obtained by calculating the osmolality required in the liquid state to reach a desired osmotic force in the gelled state by assuming that a polyoxyalkylene block copolymer does not contribute to the osmolality in the gel state.
摘要:
Iso-osmotic, hyperosmotic, or hypo-osmotic, pH balanced, thermoreversible gels are ideal medical devices or vehicles for drug delivery to the skin of a mammal. The osmolality in the gel state can be calculated by assuming that a polyoxyalkylene block copolymer or polyether present in said gel does not contribute to the osmolality in the gel state, although it does contribute to the measured osmolality in the liquid state.
摘要:
Isotonic, iso-osmotic, pH balanced thermoreversible gels are ideal medical devices or vehicles for drug injection into the body of a mammal. The osmolality in the gel state can be calculated by assuming that a polyoxyalkylene block copolymer or polyether present in said gel does not contribute to the osmolality in the gel state, although it does contribute to the osmolality in the liquid state.
摘要:
Isotonic, iso-osmotic, pH balanced thermoreversible gels are ideal vehicles for drug delivery to a body cavity of a mammal. The osmolality in the gel state can be calculated by assuming that a polyoxyalkylene block copolymer or polyether present in said gel does not contribute to the osmolality in the gel state, although it does contribute to the osmolality in the liquid state.
摘要:
This invention relates to an improved method for conducting peritoneal dialysis with a decreased total volume of dialysis fluid used and increased efficacy parameters such as ultrafiltration rate, urea clearance rate and dialysate volume as compared to conventional techniques. In the method of this invention, a fluid communication through the peritoneal membrane into the peritoneal cavity of a patient in need of peritoneal dialysis treatment is established. An initial volume of an aqueous peritoneal dialysis composition containing an osmotic agent is instilled into the peritoneal cavity through the fluid communication. The dialysis composition contains an amount of dissolved osmotic agent (i) that is insufficient to adequately dialyze the patient during a predetermined time period of dialysis treatment, but (ii) that is present at an osmolarity that is greater than the osmolarity of the body fluids in contact with the membrane, such that an osmolarity gradient is created across the membrane between the composition and the body fluids. A flux of water and solute enters the composition from the body fluids by means of that gradient.A further amount of dissolved osmotic agent is released into the instilled dialysis composition to form a modified dialysis composition. That further osmotic agent is released in an amount sufficient to maintain a substantially constant osmolarity gradient between the modified dialysis composition and the body fluids such that the water and solute flux continues to enter into the modified dialysis composition during the predetermined dialysis time period. The modified dialysis composition is substantially removed from the peritoneal cavity at the end of the treatment time period.