Abstract:
It is an object of the present disclosure to produce a soft magnetic material having high saturation magnetization by heat-treating a Fe-based amorphous alloy, without needing the control of the atmosphere.The present disclosure provides a method for producing a soft magnetic material, comprising heat treating a Fe-based amorphous alloy in a state in which the alloy is wrapped with a sheet comprising one or more substances having a standard Gibbs energy of formation of an oxide thereof that is larger in a negative direction than Fe, to form a crystal phase.
Abstract:
A method for producing a soft magnetic material having both high saturation magnetization and low coercive force, including: preparing an alloy having a composition represented by Compositional Formula 1 or 2 and having an amorphous phase, and heating the alloy at a rate of temperature rise of 10° C./sec or more and holding for 0 to 80 seconds at a temperature equal to or higher than the crystallization starting temperature and lower than the temperature at which Fe—B compounds start to form wherein, Compositional Formula 1 is Fe100-x-yBxMy, M represents at least one element selected from Nb, Mo, Ta, W, Ni, Co and Sn, and x and y are in atomic percent (at %) and satisfy the relational expressions of 10≤x≤16 and 0≥y≤8, and Compositional Formula 2 is Fe100-a-b-cBaCubM′c, M′ represents at least one element selected from Nb, Mo, Ta, W, Ni and Co, and a, b and c are in atomic percent (at %) and satisfy the relational expressions 10≤a≤16, 0
Abstract:
A soft magnetic member is formed such that, when a differential relative permeability in an applied magnetic field of 100 A/m is represented by a first differential relative permeability μ′L, and when a differential relative permeability in an applied magnetic field of 40 kA/m is represented by a second differential relative permeability μ′H, a ratio of the first differential relative permeability μ′L to the second differential relative permeability μ′H satisfies a relationship of μ′L/μ′H≦10, and a magnetic flux density in an applied magnetic field of 60 kA/m is 1.15 T or higher.
Abstract:
An object of the present disclosure is to provide a production method for a stator in which a breakage of the stator core can be prevented when coils are mounted thereon. The present embodiment is a production method for a stator that includes a stator core having a tooth and includes a coil wound around the tooth. The method includes: a step of preparing a stacked body which has the tooth and in which a plurality of plate-like soft magnetic materials each including an amorphous structure are stacked; a step of mounting the coil on the tooth; and a step of, after the coil is mounted, heating the stacked body to a temperature equal to or higher than a crystallization temperature of the soft magnetic materials.