Abstract:
Test line structures on a wafer are provided. A first testing pad is formed in a scribe line of the wafer. A second testing pad is formed in the scribe line. A transistor under test is formed in the scribe line and is coupled between the first testing pad and the second testing pad. A device is formed in the scribe line and is coupled between the first testing pad and the transistor under test. A third testing pad is formed in the scribe line and is coupled between the device and the transistor under test. A current passing through the transistor under test is measured via the second testing pad or the first testing pad when a first voltage is applied to the first testing pad, wherein the first voltage is determined according to a second voltage from the third testing pad.
Abstract:
Apparatus and methods for effective impurity gettering are described herein. In some embodiments, a described device includes: a substrate; a pixel region disposed in the substrate; an isolation region disposed in the substrate and within a proximity of the pixel region; and a heterogeneous layer on the seed area. The isolation region comprises a seed area including a first semiconductor material. The heterogeneous layer comprises a second semiconductor material that has a lattice constant different from that of the first semiconductor material.
Abstract:
Apparatus and methods for effective impurity gettering are described herein. In some embodiments, a described device includes: a substrate; a pixel region disposed in the substrate; an isolation region disposed in the substrate and within a proximity of the pixel region; and a heterogeneous layer on the seed area. The isolation region comprises a seed area including a first semiconductor material. The heterogeneous layer comprises a second semiconductor material that has a lattice constant different from that of the first semiconductor material.
Abstract:
The semiconductor die includes a base body, protruding portions and bonding pads. The base body has sidewalls. The protruding portions are laterally protruding from the sidewalls respectively. The bonding pads are disposed on the protruding portions respectively. The wafer dicing method includes following operations. Chips are formed on a semiconductor wafer. Bonding pads are formed on a border line between every two of the adjacent chips. A scribe line is formed and disposed along the bonding pads. A photolithographic pattern is formed on a top surface of the semiconductor wafer to expose the scribe line. The scribe line is etched to a depth in the semiconductor wafer substantially below the top surface layer to form an etched pattern. A back surface of the semiconductor wafer is thinned until the etched pattern in the wafer substrate is exposed.
Abstract:
The semiconductor die includes a base body, protruding portions and bonding pads. The base body has sidewalls. The protruding portions are laterally protruding from the sidewalls respectively. The bonding pads are disposed on the protruding portions respectively. The wafer dicing method includes following operations. Chips are formed on a semiconductor wafer. Bonding pads are formed at a border line between every two of the adjacent chips. A scribe line is formed and disposed along the bonding pads. A photolithographic pattern is formed on a top layer of the semiconductor wafer to expose the scribe line. The scribe line is etched to a depth in the semiconductor wafer substantially below the top layer to form an etched pattern. A back surface of the semiconductor wafer is thinned until the etched pattern in the semiconductor wafer is exposed.
Abstract:
An image sensor device includes a silicon-based substrate, a silicon-germanium epitaxy layer, an isolation feature, an active pixel cell and a logic circuit. The silicon-germanium epitaxy layer is on the silicon-based substrate, in which the silicon-germanium epitaxy layer has a composition of Si1-xGex, where 0
Abstract:
A photosensor device and the method of making the same are provided. In one embodiment, the device includes at least one pixel cell. The at least one pixel cell includes a substrate formed from a semiconductor material, and includes first and second photosensor regions. The first photosensor region is disposed in the substrate and includes a first dopant of a first conductivity type. The second photosensor region is disposed above the first photosensor region and includes a second dopant of a second conductivity type. The second photosensor region can have an increase in dopant concentration from an outer edge to a center portion therein.
Abstract:
A method for forming an image sensor device on a substrate is disclosed. The method includes (a) recessing a portion of the substrate thereby forming a first shallow trench; (b) forming a spacer layer surrounding at least part of a sidewall of the first shallow trench; and (c) forming a first deep trench that extends below the first shallow trench by further recessing the substrate while using the spacer layer as a mask.
Abstract:
A method for forming a backside illuminated (BSI) image sensor device structure is provided. The BSI image sensor includes a first substrate having a top surface and a bottom surface, and a plurality of pixel regions formed at the top surface of the first substrate. The BSI image sensor also includes a grid structure through the first substrate and between two adjacent pixel regions. The grid structure extends continuously through the first substrate in a vertical direction and has a top surface and a bottom surface, the top surface of the grid structure protrudes above the bottom surface of the first substrate, and the bottom surface is leveled with the top surface of the first substrate.
Abstract:
Embodiments of mechanisms for forming an image sensor device structure are provided. The image sensor device structure includes a substrate and a transfer transistor formed on the substrate. The image sensor device structure also includes a floating node formed in the substrate and a photosensitive element formed in the substrate. The transfer transistor is formed between the floating node and the photosensitive element, and the photosensitive element includes a first doping region with a lateral doping gradient.