Abstract:
A computer-implemented method for decreasing RAID rebuilding time may include (1) identifying data for which there is a need for physical integrity and high availability, (2) segmenting the data sequentially into a plurality of groups of chunks, with each group of chunks including redundant data sufficient to rebuild a lost chunk within the group of chunks, (3) storing the groups of chunks on a storage array according to a four-cycle-free bipartite storage map that, for each group of chunks, stores each chunk on a different device set within the storage array and, when a chunk within a group of chunks is lost, enables all other chunks within the group to be read in parallel from different devices within the storage array. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A computer-implemented method for detecting suspicious attempts to access data based on organizational relationships may include (1) detecting an attempt by a computing device within an organization to access an additional computing device within the organization, (2) identifying, based on a directory service associated with the organization that classifies the computing device and the additional computing device, an organizational relationship between the computing device and the additional computing device, (3) determining, based on the organizational relationship between the computing device and the additional computing device, that the attempt by the computing device to access the additional computing device is suspicious, and (4) performing a security action in response to determining that the attempt by the computing device to access the additional computing device is suspicious. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A system and method for managing a resource reclamation reference list at a coarse level. A storage device is configured to store a plurality of storage objects in a plurality of storage containers, each of said storage containers being configured to store a plurality of said storage objects. A storage container reference list is maintained, wherein for each of the storage containers the storage container reference list identifies which files of a plurality of files reference a storage object within a given storage container. In response to detecting deletion of a given file that references an object within a particular storage container of the storage containers, a server is configured to update the storage container reference list by removing from the storage container reference list an identification of the given file. A reference list associating segment objects with files that reference those segment objects may not be updated response to the deletion.
Abstract:
A computer-implemented method for detecting malware-induced crashes may include (1) identifying, by analyzing a health log associated with a previously stable computing device, the occurrence of an unexpected stability problem on the previously stable computing device, (2) identifying, by analyzing an event log associated with the previously stable computing device, an event that is potentially responsible for the occurrence of the unexpected stability problem on the previously stable computing device, (3) determining, due at least in part to the event being potentially responsible for the occurrence of the unexpected stability problem on the previously stable computing device, that the event is potentially malicious, and (4) performing a security action in response to determining that the event is potentially malicious. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
The disclosed computer-implemented method for dynamic load balancing on disks may include (1) calculating the spare throughput for each disk, (2) identifying a lightly loaded disk and a heavily loaded disk, (3) identifying a set of workloads to be transferred from the heavily loaded disk to the lightly loaded disk by: (a) beginning with the set empty, (b) identifying candidate workloads on the heavily loaded disk, (c) adding a new workload from the candidate workloads to the set when the new workload would not reduce the spare throughput on the lightly loaded disk below a threshold if both the set and the workload were transferred to the lightly loaded disk, and (d) considering each workload for transfer in order from most throughput consumed to least throughput consumed, and (4) transferring the set of workloads. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A computer-implemented method for detecting selective malware attacks is described. A website visited by a user is identified based on a number of visits to the website satisfying a predetermined threshold. A web crawl is performed on the identified website. Results of the web crawl are analyzed to determine whether the identified website includes a malicious software attack designed to selectively attack visitors to the website.
Abstract:
A computer-implemented method for reducing false positives when using event-correlation graphs to detect attacks on computing systems may include (1) detecting a suspicious event involving a first actor within a computing system, (2) constructing an event-correlation graph that includes a first node that represents the first actor, a second node that represents a second actor, and an edge that represents an additional suspicious event involving the first actor and the second actor, (3) comparing the event-correlation graph with at least one additional event-correlation graph that represents events on at least one additional computing system, (4) determining that a similarity of the event-correlation graph and the additional event-correlation graph exceeds a predetermined threshold, and (5) classifying the suspicious event as benign based on determining that the similarity of the event-correlation graph and the additional event-correlation graph exceeds the predetermined threshold. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A computer-implemented method for using event-correlation graphs to detect attacks on computing systems may include (1) detecting a suspicious event involving a first actor within a computing system, (2) constructing an event-correlation graph that includes a first node that represents the first actor, a second node that represents a second actor, and an edge that interconnects the first node and the second node and represents a suspicious event involving the first actor and the second actor, (3) calculating, based at least in part on the additional suspicious event, an attack score for the event-correlation graph, (4) determining that the attack score is greater than a predetermined threshold, and (5) determining, based at least in part on the attack score being greater than the predetermined threshold, that the suspicious event may be part of an attack on the computing system. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A computer-implemented method for providing increased scalability in deduplication storage systems may include (1) identifying a database that stores a plurality of reference objects, (2) determining that at least one size-related characteristic of the database has reached a predetermined threshold, (3) partitioning the database into a plurality of sub-databases capable of being updated independent of one another, (4) identifying a request to perform an update operation that updates one or more reference objects stored within at least one sub-database, and then (5) performing the update operation on less than all of the sub-databases to avoid processing costs associated with performing the update operation on all of the sub-databases. Various other systems, methods, and computer-readable media are also disclosed.
Abstract:
A computer-implemented method for protecting document files from macro threats may include (1) identifying a document file that contains an embedded macro, (2) locating an event-driven programming language module that stores the embedded macro for the document file, and (3) cleaning the event-driven programming language module by removing procedures for the embedded macro within the event-driven programming language module and retaining variable definitions within the event-driven programming language module. Various other methods, systems, and computer-readable media are also disclosed.