摘要:
An apparatus and method for atomizing liquid metal are disclosed. A liquid metal supply is coupled to a nozzle for atomizing a stream of liquid metal in an atomizing zone extending from the nozzle. A viewing instrument provides a field of view extending to the atomization zone. A sensor coupled with the viewing instrument generates an image of the atomizing zone, and a control adjusts a flow rate of the stream responsive to the image.
摘要:
An apparatus and method for atomizing liquid metal are disclosed. A liquid metal supply is coupled to a nozzle for atomizing a stream of liquid metal in an atomizing zone extending from the nozzle. A viewing instrument provides a field of view extending to the atomization zone. A sensor coupled with the viewing instrument generates an image of the atomizing zone, and a control adjusts a flow rate of the stream responsive to the image.
摘要:
A method for atomizing high temperature melts to achieve greater efficiency and smaller particle size is described. The method involves the employment of lower pressure gas coupled with an atomization nozzle larger than prior art structures. The atomization nozzle is part of a close coupled atomization structure having shallow depth dimension. The method allows atomization at melts with reduced likelihood of freeze off. The method reduces heat extraction from the melt while the melt is still contained in the atomization nozzle.
摘要:
Close-coupled atomization systems and methods employing non-axisymmetric gas flow have demonstrated superior efficiency in the production of fine superalloy powder, compared to conventional close-coupled atomization utilizing an axisymmetric annular gas orifice and an axisymmetric melt nozzle. A means has been devised for convening otherwise axisymmetric plenums into non-axisymmetric plenums that produce non-axisymmetric gas flow.
摘要:
An apparatus that controls the flow of a stream of metal, such as produced from the bottom of a hearth, includes a cylindrical metallic nozzle body having a hollow wall which includes a slit extending substantially parallel to the axis of the cylinder so that there is no electrical continuity around the nozzle wall across the slit. The walls of the cylinder are preferably formed of hollow tubes through which cooling water is passed. A sensor senses a performance characteristic of the apparatus, such as the temperature of the nozzle body. An induction heating coil surrounds the nozzle body, and a controllable induction heating power supply is connected to the induction heating coil to provide power. A controller controls the power provided to the induction heating coil by the induction heating power supply responsive to an output signal of the sensor, so that a selected performance characteristic of the apparatus may be maintained.
摘要:
A process and apparatus for producing a spray of atomized metal droplets includes providing an apparatus that forms a spray of molten metal droplets, the apparatus including a metal source and a metal stream atomizer, producing a stream of liquid metal from the metal source, and atomizing the stream of liquid metal with the metal stream atomizer to form the spray of molten metal droplets. A controlled spray of atomized metal droplets is achieved by selectively varying the temperature of the droplets in the spray of molten metal droplets, the step of selectively varying including the step of varying the flow rate of metal produced by the metal source, responsive to a command signal, and sensing the operation of the apparatus and generating the command signal indicative of the operation of the apparatus. The step of atomizing may be accomplished by directing a flow of an atomizing gas at the stream of liquid metal, and then selectively controlling the flow rate of the atomizing gas.
摘要:
A process and apparatus for producing a spray of atomized metal droplets includes providing an apparatus that forms a spray of molten metal droplets, the apparatus including a metal source and a metal stream atomizer, producing a stream of liquid metal from the metal source, and atomizing the stream of liquid metal with the metal stream atomizer to form the spray of molten metal droplets. A controlled spray of atomized metal droplets is achieved by selectively varying the temperature of the droplets in the spray of molten metal droplets, the step of selectively varying including the step of varying the flow rate of metal produced by the metal source, responsive to a command signal, and sensing the operation of the apparatus and generating the command signal indicative of the operation of the apparatus. The step of atomizing may be accomplished by directing a flow of an atomizing gas at the stream of liquid metal, and then selectively controlling the flow rate of the atomizing gas.