摘要:
Wavelet estimation method, particularly advantageous for full wavefield inversion (“FWI”) of seismic data, that makes use of both the primary and multiple reflections in the data. The inventive method uses an FWI algorithm to generate a subsurface model from primary reflections (101) in a shallow layer before first arrival of multiple reflections (101). The model is then used to simulate multiples (102). The wavelet is subsequently modified (104) such that the simulated multiples closely match the true recorded multiples (103). The simulated multiples may then be subtracted from the measured data (105) thereby creating a deeper top layer of data substantially free of multiples, and the method may then be repeated to extend the subsurface model to a greater depth (106).
摘要:
Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof.
摘要:
Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof.
摘要:
Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof.
摘要:
Method for speeding up iterative inversion of seismic data (106) to obtain a subsurface model (102), using local cost function optimization. The frequency spectrum of the updated model at each iteration is controlled to match a known or estimated frequency spectrum for the subsurface region, preferably the average amplitude spectrum of the subsurface P-impedance. The controlling is done either by applying a spectral-shaping filter to the source wavelet (303) and to the data (302) or by applying the filter, which may vary with time, to the gradient of the cost function (403). The source wavelet's amplitude spectrum (before filtering) should satisfy D(f)=fIp(f)W(f), where f is frequency, D(f) is the average amplitude spectrum of the seismic data, and Ip(f) is the average amplitude spectrum for P-impedance in the subsurface region (306,402) or an approximation thereof.
摘要:
Wavelet estimation method, particularly advantageous for full wavefield inversion (“FWI”) of seismic data, that makes use of both the primary and multiple reflections in the data. The inventive method uses an FWI algorithm to generate a subsurface model from primary reflections (101) in a shallow layer before first arrival of multiple reflections (101). The model is then used to simulate multiples (102). The wavelet is subsequently modified (104) such that the simulated multiples closely match the true recorded multiples (103). The simulated multiples may then be subtracted from the measured data (105) thereby creating a deeper top layer of data substantially free of multiples, and the method may then be repeated to extend the subsurface model to a greater depth (106).
摘要:
A method, including: obtaining a seismic dataset that is separated into subsets according to predetermined subsurface reflection angle ranges; performing, with a computer, an acoustic full wavefield inversion process on each of the subsets, respectively, to invert for density and generate respective density models; generating acoustic impedances for each of the subsets, as a function of reflection angle, using the respective density models; and transforming, using a computer, the acoustic impedances for each of the subsets into reflectivity sections, wherein the transforming includes normalizing the reflectivity sections by their respective bandwidth.
摘要:
A method, including: obtaining a velocity model generated by an acoustic full wavefield inversion process; generating, with a computer, a variable Q model by applying pseudo-Q migration on processed seismic data of a subsurface region, wherein the velocity model is used as a guided constraint in the pseudo-Q migration; and generating, with a computer, a final subsurface velocity model that recovers amplitude attenuation caused by gas anomalies in the subsurface region by performing a visco-acoustic full wavefield inversion process, wherein the variable Q model is fixed in the visco-acoustic full wavefield inversion process.
摘要:
A method of evaluating a subsurface region by separating/enhancing a certain type of seismic event data of interest from an overall set of seismic event data which includes other, different types of seismic event data is disclosed herein. In accordance with one feature, a particular type of gather is generated from the seismic event data such that the gather includes at least a portion of the data which is of interest and at least a portion of the other data. A series of data discrimination lines are incorporated into the gather at positions and directions which are established in the gather in a predetermined way. Using the data discrimination lines, the data of interest which is present in the gather is separated/enhanced with respect to the other data within the gather. The separated data may be used for example in producing a map of the particular subterranean region. In accordance with another feature, the gather is selected such that the incorporated discrimination lines approach a near parallel relationship with one another. Thereby, the data is transformed in a way which causes the discrimination lines to be parallel with one another, resulting in reduced frequency distortion accompanied by improved accuracy in the separation/enhancement of data. In accordance with still another feature, the disclosed data separation/enhancement method is compatible with an iterative approach.
摘要:
A method, including: obtaining a seismic dataset that is separated into subsets according to predetermined subsurface reflection angle ranges; performing, with a computer, an acoustic full wavefield inversion process on each of the subsets, respectively, to invert for density and generate respective density models; generating acoustic impedances for each of the subsets, as a function of reflection angle, using the respective density models; and transforming, using a computer, the acoustic impedances for each of the subsets into reflectivity sections, wherein the transforming includes normalizing the reflectivity sections by their respective bandwidth.