Abstract:
A cyclic process is disclosed for the production of taurine from alkali vinyl sulfonate in a high overall yield by continuously converting the byproducts of the ammonolysis reaction, sodium ditaurinate and sodium tritaurinate, to sodium taurinate. Sodium sulfate and residual taurine in the crystallization mother liquor are efficiently separated by converting taurine into a highly soluble form of sodium taurinate or ammonium taurinate while selectively crystallizing sodium sulfate.
Abstract:
The present invention discloses a process for the production of ethionic acid by reacting ethanol with sulfur trioxide in a molar ratio of 1:2 at a temperature from 40 to 100° C. in a falling film reactor while cooling the reactor with a cooling means.
Abstract:
There is disclosed a process for producing taurine by the ammonolysis of alkali isethionate in the presence of alkali ditaurinate or alkali tritaurinate, or their mixture, to inhibit the formation of byproducts and to continuously convert the byproducts of the ammonolysis reaction to alkali taurinate. Alkali taurinate is neutralized with isethionic acid to obtain taurine and to regenerate alkali isethionate. The production yield is increased to from 90% to nearly quantitative. The ammonolysis reaction is catalyzed by alkali salts of hydroxide, sulfate, sulfite, phosphate, or carbonate.
Abstract:
The present invention discloses a process for the preparation of taurine from ethionic acid and ethanol by way of ethanol-derived ethionic acid by the ammonolysis of ethionic acid and by the ammonolysis of sodium isethionate and sodium vinyl sulfonate, key intermediates prepared from ethionic acid.
Abstract:
A method is disclosed for the production of taurine in high yield by a cyclic process of reacting monoethanolamine, sulfuric acid, and ammonium sulfite in the presence of additives to inhibit the hydrolysis of 2-aminoethyl hydrogen sulfate intermediate. The cyclic process is economical and little waste is generated.
Abstract:
The present invention discloses a cyclic process for the production of taurine from ethylene oxide in a high yield of greater than 95% by continuously converting the byproducts of the ammonolysis reaction, sodium ditaurinate and sodium tritaurinate, to sodium taurinate. The cyclic process is completed by using sulfur dioxide or sulfurous acid to neutralize sodium taurinates to recover taurine and to regenerate sodium bisulfite, which is then reacted with ethylene oxide.
Abstract:
A method is disclosed for the production of taurine by a cyclic process of reacting ethylene oxide with sodium bisulfite and ammonium to obtain sodium taurinate. After excess ammonia is removed from the reaction mixture, sodium taurinate is neutralized with sulfur dioxide or sulfurous acid to recover taurine and to regenerate sodium bisulfate, which is then reacted with ethylene oxide.
Abstract:
There is disclosed a process for producing taurine by the ammonolysis of alkali isethionate in the presence of alkali ditaurinate or alkali tritaurinate, or their mixture, to inhibit the formation of byproducts and to continuously convert the byproducts of the ammonolysis reaction to alkali taurinate. The production yield is increased to from 90% to nearly quantitative. The ammonolysis reaction is catalyzed by alkali salts of hydroxide, sulfate, sulfite, phosphate, or carbonate.
Abstract:
A cyclic process is disclosed for the production of taurine from alkali isethionate in a high overall yield by continuously converting the byproducts of the ammonolysis reaction, sodium ditaurinate and sodium tritaurinate, to sodium taurinate. Sodium sulfate and residual taurine in the crystallization mother liquor are efficiently separated by converting taurine into a highly soluble form of sodium taurinate or ammonium taurinate while selectively crystallizing sodium sulfate.
Abstract:
The present invention discloses a cyclic process for the production of taurine from alkali isethionate and alkali vinyl sulfonate in a high overall yield of greater than 95% by continuously converting the byproducts of the ammonolysis reaction, sodium ditaurinate and sodium tritaurinate, to sodium taurinate. Pure sodium ditaurinate and sodium tritaurinate are prepared from diethanolamine and triethanolamine as starting materials, respectively, and are subjected to the ammonolysis reaction to yield a mixture of sodium taurinate, sodium ditaurinate, and sodium tritaurinate.