-
公开(公告)号:US11125909B2
公开(公告)日:2021-09-21
申请号:US15943197
申请日:2018-04-02
Applicant: Silixa Ltd. , Chevron U.S.A. Inc.
Inventor: Mahmoud Farhadiroushan , Tom Parker , Daniel Finfer
IPC: G01V11/00 , G01V1/22 , E21B47/135 , G01V1/40
Abstract: Embodiments of the present invention help in the processing and interpretation of seismic survey data, by correlating or otherwise comparing or associating seismic data obtained from a seismic survey with flow information obtained from a well or borehole in the surveyed area. In particular, embodiments of the present invention allow for flow data representing a flow profile along a well that is being monitored by a distributed acoustic sensor to be determined, such that regions of higher flow in the well can be determined. For example, in the production zone the well will be perforated to allow oil to enter the well, but it has not previously been possible to determine accurately where in the production zone the oil is entering the well. However, by determining a flow rate profile along the well using the DAS then this provides information as to where in the perforated production zone oil is entering the well, and hence the location of oil bearing sands. This location can then be combined or otherwise correlated, used, or associated with petroleum reservoir location information obtained from the seismic survey, to improve the confidence and/or accuracy in the determined petroleum reservoir location.
-
公开(公告)号:US20210278255A1
公开(公告)日:2021-09-09
申请号:US17328014
申请日:2021-05-24
Applicant: Silixa Ltd. , Chevron U.S.A. Inc.
Inventor: Sergey Shatalin , Julian Dajczgewand , Mahmoud Farhadiroushan , Tom Parker
Abstract: Embodiments of the invention provide an improved optical fiber distributed acoustic sensor system that makes use of an optical fiber having reflector portions distributed along its length in at least a first portion. In particular, in order to increase the spatial resolution of the sensor system to the maximum, the reflector portions are positioned along the fiber separated by a distance that is equivalent to twice the distance an optical pulse travels along the fiber in a single sampling period of the data acquisition opto-electronics within the sensor system. As such, no oversampling of the reflections of the optical pulses from the reflector portions is undertaken, which means that it is important that the sampling points for data acquisition in the sensor system are aligned with the reflections that arrive at the sensor system from along the sensing fiber. In order to ensure such alignment, adaptive delay componentry may be used to adaptively align the reflected optical signals (or their electrical analogues) with the sampling points. Alternatively, control over the sampling points can also be undertaken to re-synchronise the sampling points with the returning reflections. In addition, in order to allow higher speed sampling to be undertaken, reflection equalisation componentry may also be used to reduce the dynamic range of the returning reflections.
-
公开(公告)号:US20190323863A1
公开(公告)日:2019-10-24
申请号:US16474747
申请日:2018-01-05
Applicant: Silixa Ltd. , Chevron U.S.A. Inc.
Inventor: Sergey Shatalin , Julian Dajczgewand , Mahmoud Farhadiroushan , Tom Parker
Abstract: An improved optical fiber distributed acoustic sensor system uses an optical fiber having reflector portions distributed along its length in at least a first portion. The reflector portions are positioned along the fiber separated by a distance that is equivalent to twice the distance an optical pulse travels along the fiber in a single sampling period of the data acquisition opto-electronics within the sensor system. No oversampling of the reflections of the optical pulses from the reflector portions is undertaken. The sampling points for data acquisition in the sensor system are aligned with the reflections that arrive at the sensor system from along the sensing fiber. Adaptive delay componentry adaptively aligns the reflected optical signals (or their electrical analogues) with the sampling points. Control over the sampling points can re-synchronise the sampling points with the returning reflections. Reflection equalisation componentry may reduce the dynamic range of the returning reflections.
-
公开(公告)号:US20180224572A1
公开(公告)日:2018-08-09
申请号:US15943197
申请日:2018-04-02
Applicant: Silixa Ltd. , Chevron U.S.A. Inc.
Inventor: Mahmoud Farhadiroushan , Tom Parker , Daniel Finfer
CPC classification number: G01V11/00 , E21B47/123 , G01V1/226 , G01V1/40 , G01V2210/1429 , G01V2210/6161 , G01V2210/644
Abstract: Embodiments of the present invention help in the processing and interpretation of seismic survey data, by correlating or otherwise comparing or associating seismic data obtained from a seismic survey with flow information obtained from a well or borehole in the surveyed area. In particular, embodiments of the present invention allow for flow data representing a flow profile along a well that is being monitored by a distributed acoustic sensor to be determined, such that regions of higher flow in the well can be determined. For example, in the production zone the well will be perforated to allow oil to enter the well, but it has not previously been possible to determine accurately where in the production zone the oil is entering the well. However, by determining a flow rate profile along the well using the DAS then this provides information as to where in the perforated production zone oil is entering the well, and hence the location of oil bearing sands. This location can then be combined or otherwise correlated, used, or associated with petroleum reservoir location information obtained from the seismic survey, to improve the confidence and/or accuracy in the determined petroleum reservoir location.
-
公开(公告)号:US20210072190A1
公开(公告)日:2021-03-11
申请号:US17102221
申请日:2020-11-23
Applicant: Silixa Ltd , Chevron U.S.A. Inc.
Inventor: Mohammad Amir , Mahmoud Farhadiroushan , Daniel Finfer , Veronique Mahue , Tom Parker
Abstract: Embodiments of the invention provide a “tool-kit” of processing techniques which can be employed in different combinations depending on the circumstances. For example, flow speed can be found using eddy tracking techniques, or by using speed of sound measurements. Moreover, composition can be found by using speed of sound measurements and also by looking for turning points in the k-w curves, particularly in stratified multi-phase flows. Different combinations of the embodiments can therefore be put together to provide further embodiments, to meet particular flow sensing requirements, both on the surface and downhole. Once the flow speed is known, then at least in the case of a single phase flow, the flow speed can be multiplied by the interior cross-sectional area of the pipe to obtain the flow rate. The mass flow rate can then be obtained if the density of the fluid is known, once the composition has been determined.
-
公开(公告)号:US11022467B2
公开(公告)日:2021-06-01
申请号:US16474747
申请日:2018-01-05
Applicant: Silixa Ltd. , Chevron U.S.A. Inc.
Inventor: Sergey Shatalin , Julian Dajczgewand , Mahmoud Farhadiroushan , Tom Parker
Abstract: An improved optical fiber distributed acoustic sensor system uses an optical fiber having reflector portions distributed along its length in at least a first portion. The reflector portions are positioned along the fiber separated by a distance that is equivalent to twice the distance an optical pulse travels along the fiber in a single sampling period of the data acquisition opto-electronics within the sensor system. No oversampling of the reflections of the optical pulses from the reflector portions is undertaken. The sampling points for data acquisition in the sensor system are aligned with the reflections that arrive at the sensor system from along the sensing fiber. Adaptive delay componentry adaptively aligns the reflected optical signals (or their electrical analogues) with the sampling points. Control over the sampling points can re-synchronise the sampling points with the returning reflections. Reflection equalisation componentry may reduce the dynamic range of the returning reflections.
-
公开(公告)号:US10704932B2
公开(公告)日:2020-07-07
申请号:US15532812
申请日:2015-12-02
Applicant: Silixa Ltd. , Chevron U.S.A. Inc.
Inventor: Tom Parker , Mahmoud Farhadiroushan , Arran Gillies
Abstract: An optical fiber sensing system includes a sensing optical fiber and one or more optical amplifiers in series with the sensing fiber and arranged to increase the power of sensing pulses travelling along the fiber to thereby increase the range of the sensing system. The optical fiber sensing system is one selected from the group including an optical fiber distributed acoustic sensor (DAS), an optical fiber distributed temperature sensor (DTS), or an optical time domain reflectometry (OTDR) system.
-
公开(公告)号:US10927667B2
公开(公告)日:2021-02-23
申请号:US15877588
申请日:2018-01-23
Applicant: Silixa Ltd. , CHEVRON U.S.A. INC.
Inventor: Mahmoud Farhadiroushan , Tom Parker , Daniel Finfer , Veronique Mahue
IPC: E21B47/135 , G01P5/24 , G01N29/46 , E21B47/0224 , G01F1/708 , G01N29/024
Abstract: Externally generated noise can be coupled into a fluid carrying structure such as a pipe, well, or borehole so as to artificially acoustically “illuminate” the pipe, well, or borehole, and allow fluid flow in the structure or structural integrity to be determined. In the disclosed system, externally generated noise is coupled into the structure being monitored at the same time as data logging required to undertake the monitoring is performed. This has three effects. First, the externally generated sound is coupled into the structure so as to “illuminate” acoustically the structure to allow data to be collected from which fluid flow may be determined, and secondly the amount of data that need be collected is reduced, as there is no need to log data when the structure is not being illuminated. Thirdly, there are signal processing advantages in having the data logging being undertaken only when the acoustic illumination occurs.
-
公开(公告)号:US20170343389A1
公开(公告)日:2017-11-30
申请号:US15532812
申请日:2015-12-02
Applicant: Silixa Ltd. , Chevron U.S.A. Inc.
Inventor: Tom Parker , Mahmoud Farhadiroushan , Arran Gillies
Abstract: An optical fiber sensing system includes a sensing optical fiber and one or more optical amplifiers in series with the sensing fiber and arranged to increase the power of sensing pulses travelling along the fiber to thereby increase the range of the sensing system. The optical fiber sensing system is one selected from the group including an optical fiber distributed acoustic sensor (DAS), an optical fiber distributed temperature sensor (DTS), or an optical time domain reflectometry (OTDR) system.
-
公开(公告)号:US11768179B2
公开(公告)日:2023-09-26
申请号:US17102221
申请日:2020-11-23
Applicant: Silixa Ltd , Chevron U.S.A. Inc.
Inventor: Mohammad Amir , Mahmoud Farhadiroushan , Daniel Finfer , Veronique Mahue , Tom Parker
CPC classification number: G01N29/024 , G01F1/661 , G01F1/666 , G01F1/708 , G01F1/74 , G01N29/2418 , G01N29/46 , G01N2291/0222 , G01N2291/02433 , G01N2291/02809 , G01N2291/02836
Abstract: Embodiments of the invention provide a “tool-kit” of processing techniques which can be employed in different combinations depending on the circumstances. For example, flow speed can be found using eddy tracking techniques, or by using speed of sound measurements. Moreover, composition can be found by using speed of sound measurements and also by looking for turning points in the k-w curves, particularly in stratified multi-phase flows. Different combinations of the embodiments can therefore be put together to provide further embodiments, to meet particular flow sensing requirements, both on the surface and downhole. Once the flow speed is known, then at least in the case of a single phase flow, the flow speed can be multiplied by the interior cross-sectional area of the pipe to obtain the flow rate. The mass flow rate can then be obtained if the density of the fluid is known, once the composition has been determined.
-
-
-
-
-
-
-
-
-