Abstract:
In one embodiment, an apparatus includes: a sensor to sense real world information; a digitizer coupled to the sensor to digitize the real world information into digitized information; a signal processor coupled to the digitizer to process the digitized information into a spectrogram; a neural engine coupled to the signal processor, the neural engine comprising an autoencoder to compress the spectrogram into a compressed spectrogram; and a wireless circuit coupled to the neural engine to send the compressed spectrogram to a remote destination, to enable the remote destination to process the compressed spectrogram.
Abstract:
In an embodiment, an apparatus includes: a sensor to sense real world information; a digitizer coupled to the sensor to digitize the real world information into digitized information; a signal processor coupled to the digitizer to process the digitized information into an image; a discriminator coupled to the signal processor to determine, based at least in part on the image, whether the real world information comprises an anomaly, where the discriminator is trained via a generative adversarial network; and a controller coupled to the discriminator.
Abstract:
Embodiments include cryptographic circuits having isolated operation with respect to embedded sensor operations to mitigate side-channel attacks. A cryptographic circuit, a sensor, and an analog-to-digital converter (ADC) circuit are integrated into an integrated circuit along with a cryptographic circuit. A sensed signal is output with the sensor, and the sensed signal is converted to digital data using the ADC circuit. Further, cryptographic data is generated using one or more secret keys and the cryptographic circuit. The generation of the cryptographic data has isolated operation with respect to the operation of the sensor and the ADC circuit. The isolated operation mitigates side-channel attacks. The isolated operation can be achieved using power supply, clock, and/or reset circuits for the cryptographic circuit that are electrically isolated from similar circuits for the sensor and ADC circuit. The isolated operation can also be achieved using time-division multiplex operations. Other variations can also be implemented.
Abstract:
Systems and methods are disclosed that may be implemented to process a received RF spectrum that includes both analog modulated and digitally modulated RF signals to blend between a digital demodulated signal and an analog demodulated signal obtained from the received RF spectrum prior to performing one or more signal quality mitigation operations on the blended signal (e.g., such as stereo blend, hi-cut, etc.). In one embodiment, the digital demodulated signal and the analog demodulated signal may include at least some of the same information, e.g., such as information from simulcast digital and analog channels that are obtained from the same received RF spectrum.
Abstract:
In an embodiment, an apparatus includes: a sensor to sense real world information; a digitizer coupled to the sensor to digitize the real world information into digitized information; a signal processor coupled to the digitizer to process the digitized information into an image; a discriminator coupled to the signal processor to determine, based at least in part on the image, whether the real world information comprises an anomaly, where the discriminator is trained via a generative adversarial network; and a controller coupled to the discriminator.
Abstract:
Systems and methods are disclosed for side-channel attack mitigation for secure devices including cryptographic circuits using block ciphers that are not based upon feedback. For disclosed embodiments, an integrated circuit includes a cryptographic circuit and a controller. The cryptographic circuit performs cryptographic operations in a block cipher AES mode without feedback. The controller outputs control signals to the cryptographic circuit that cause the cryptographic circuit to perform the cryptographic operations on sequential data blocks with an internally permuted order to mitigate block cipher side-channel attacks. The internally permuted order can be generated using one or more random number generators, one or more pre-configured permutated orders, or other techniques. Further, sequential data blocks can be grouped into sequential subsets of data blocks, and the cryptographic operations can be performed in sequence for the subsets with data blocks within each subset being processed with an internally permuted order.
Abstract:
Systems and methods are disclosed for rapid detection of digital content within received radio frequency (RF) signals. The disclosed embodiments digitize received RF signals and apply a cyclic prefix correlation to generate correlation values that are accumulated over a plurality of symbol times. The accumulated correlation values are then stored in a dump register after these plurality of symbol times, and the accumulated correlation values are used to determine whether or not digital content is present within the broadcast channel being analyzed. The disclosed embodiments are useful, for example, in determining whether DAB (Digital Radio Broadcast) digital content is present within audio broadcast channels by detecting the cyclic prefix within the DAB transmissions.
Abstract:
Systems and methods are disclosed for rapid detection of digital content within received radio frequency (RF) signals. The disclosed embodiments digitize received RF signals and apply a sliding window average to subsampled complex magnitudes for the digital samples to generate subsampled magnitude values. The subsampled magnitude values are then collected over a small number of symbols for the digital content, and the results are analyzed to determine whether or not digital content is present with the received signals. For example, multi-symbol histograms and magnitude ratios determined over multiple symbols can then be utilized to make the determination of whether digital content is present in the received signals. The resulting detection determination can be utilized further to control operations of systems utilizing the disclosed embodiments. The disclosed embodiments can be used, for example, to detect the presence of HD (High Definition) Radio digital content within broadcast channels.
Abstract:
Embodiments include cryptographic circuits having isolated operation with respect to embedded sensor operations to mitigate side-channel attacks. A cryptographic circuit, a sensor, and an analog-to-digital converter (ADC) circuit are integrated into an integrated circuit along with a cryptographic circuit. A sensed signal is output with the sensor, and the sensed signal is converted to digital data using the ADC circuit. Further, cryptographic data is generated using one or more secret keys and the cryptographic circuit. The generation of the cryptographic data has isolated operation with respect to the operation of the sensor and the ADC circuit. The isolated operation mitigates side-channel attacks. The isolated operation can be achieved using power supply, clock, and/or reset circuits for the cryptographic circuit that are electrically isolated from similar circuits for the sensor and ADC circuit. The isolated operation can also be achieved using time-division multiplex operations. Other variations can also be implemented.
Abstract:
A method of providing access to a resource in an integrated circuit (IC) includes determining whether an attempt is made to access the resource. The method also includes determining whether a count of attempts to access the resource equals a maximum count. The method further includes authenticating cryptographically a command for accessing the resource if the count of attempts to access the resource is less than the maximum count.