Abstract:
A gantry cooling system of a diagnostic medical imaging apparatus transfers apparatus-generated heat, such as gantry heat, to a solid material heatsink, via a circulating-fluid coolant conduit. In some embodiments, the heatsink is incorporated in the ground or within the building structure housing the apparatus.
Abstract:
A patient handling system (PHS) for a medical imaging system having a tunnel that extends through at least one scanning portion of the system. The PHS includes a first moveable pedestal that supports a detachable first pallet that includes a first patient. The first pedestal moves the first pallet through the tunnel to enable scanning of the first patient. The PHS also includes a second moveable pedestal located at a tunnel exit. The second pedestal attaches to the first pallet as the first pallet moves through the tunnel and the first pedestal subsequently detaches from the first pallet. The second pedestal then moves away from the tunnel exit to remove the first pallet from the tunnel. A second patient to be scanned is simultaneously prepared for scanning on a second pallet as the first pallet is moved through the tunnel in order to increase patient throughput through system.
Abstract:
Disclosed is a PET detector assembly in a combined PET/CT scanner system having a backplane structure for supporting two or more PET detector rings that provides substantially balanced load on the gantry backplane while accommodating the varying number of PET detector rings between short axial PET FOV system as well as long axial PET FOV system.
Abstract:
A gantry tube for a medical imaging system. The gantry tube includes a first tube located within a second tube, wherein the first tube is oriented about a longitudinal axis of the system. The gantry tube also includes a plurality of wall elements that extend between the first and second tubes, wherein the walls and first and second tubes form a plurality of channels that extend in an axial direction substantially parallel to the longitudinal axis wherein each channel is configured to hold a detector of the system. A detector is inserted into or removed from an associated channel in an axial direction from either a first end or a second end of the gantry tube.
Abstract:
A PET system for a PET/MRI machine is disclosed. The PET system includes a PET detector assembly arranged to form a single gap aligned with the high-density support structure assembly and the shielded cable assembly that run along the patient bed in the PET/MRI machine. The PET detector arrangement maximizes the allowable diameter of the PET system within the MR magnet and ensures that the high-density material does not interfere with image acquisition. Further, various image reconstruction techniques compatible with the PET detector arrangement are described.
Abstract:
Detector heads in a gantry of a medical imaging apparatus are pivotally-coupled to mounting rails oriented axially about the gantry's axial centerline. Radial alignment blocks facilitate alignment and fixation of detector faces circumferentially transverse and normal to a radius projecting from the gantry's axial centerline. A column of detector heads on a common rail are separated by axial stop blocks, for precise axial separation. Abutting detector heads on a common mounting rail are slaved to another previously transverse-aligned detector through a common, shared radial alignment block. Plural, stacked gantry backplanes are fabricated simultaneously, assuring common circumferential and radial co-registration of plural mounting rails relative to the axial centerline of the gantry. Adjustable orientation of the detector heads compensates for tolerance stack up during final assembly of the gantry, so that the detector heads are mutually aligned in a uniform grid of axial columns and circumferential rows.
Abstract:
Roll forming is used for re-shaping an iridium crucible. The crucible is placed on a platen. The platen rotates the crucible while heat is applied by a plurality of torches. A plurality of rollers press on the rotating, heated crucible to re-shape. The roll forming allows for a greater number of repetitions of the re-shaping, increasing the number of uses per expensive re-fabrication of the crucible. The roll forming may provide more exact re-shaping
Abstract:
A scintillator element is disclosed where the scintillator element includes a scintillator formed of a scintillation material capable of converting non-visible radiation into scintillation light, wherein the scintillator has a plurality of laser-etched micro-voids within the scintillator, each micro-void having an interior surface, and an intrinsic reflective layer is formed on the interior surface of at least some of the micro-voids, wherein the intrinsic reflective layer is formed from the scintillation material.
Abstract:
A scintillation block detector employs an array of optically air coupled scintillation pixels, the array being wrapped in reflector material and optically coupled to an array of silicon photomultiplier light sensors with common-cathode signal timing pickoff and individual anode signal position and energy determination. The design features afford an optimized combination of photopeak energy event sensitivity and timing, while reducing electronic circuit complexity and power requirements, and easing necessary fabrication methods. Four of these small blocks, or “miniblocks,” can be combined as optically and electrically separated quadrants of a larger single detector in order to recover detection efficiency that would otherwise be lost due to scattering between them. Events are validated for total energy by summing the contributions from the four quadrants, while the trigger is generated from either the timing signal of the quadrant with the highest energy deposition, the first timing signal derived from the four quadrant time-pickoff signals, or a statistically optimum combination of the individual quadrant event times, so as to maintain good timing for scatter events. This further reduces the number of electronic channels required per unit detector area while avoiding the timing degradation characteristic of excessively large SiPM arrays.
Abstract:
A lighting arrangement for a medical imaging system having a cylindrical wall that forms a tunnel that receives a patient to be scanned. The lighting arrangement includes a transparent wall section formed in the wall, wherein the transparent wall section extends along a transparent portion of a wall circumference. The imaging system also includes a lighting device located adjacent an outer surface of the transparent wall section. The lighting device extends along a device portion of a wall circumference corresponding to the transparent portion wherein light emitted by the lighting device is transmitted through the transparent wall section in a direction orthogonal to a longitudinal axis of the tunnel to circumferentially illuminate the tunnel. In addition, a system status is indicated by a color of light emitted by the LEDs. Further, light emitted by the lighting device varies in intensity to indicate a changing count rate.