Abstract:
An internal cooling system (10) for an airfoil (12) in a turbine engine (14) whereby the cooling system (10) includes a chordwise extending tip cooling channel (16) radially inward of a squealer tip (18) and formed at least in part by an inner wall (20) with a nonlinear outer surface (22) is disclosed. The nonlinear outer surface (22) of the inner wall (20) of the chordwise extending tip cooling channel (16) may be formed from pressure and suction side sections (24, 26) that intersect at a point (74) that is closer to the inner surface (30) of an outer wall (32) forming at least a portion of the squealer tip (18) than other aspects of the pressure side section (24) and the suction side section (26). The configurations of the pressure and suction side sections (24, 26) reduces the flow cross-sectional area, which accelerates the cooling fluid flow in a chordwise direction within the chordwise extending tip cooling channel (16) and directs cooling fluid toward the pressure and suction side outer walls (34, 36) for improved cooling efficiency.
Abstract:
A turbine airfoil assembly for installation in a gas turbine engine. The airfoil assembly includes an endwall and an airfoil extending radially outwardly from the endwall. The airfoil includes pressure and suction sidewalls defining chordally spaced apart leading and trailing edges of the airfoil. An airfoil mean line is defined located centrally between the pressure and suction sidewalls. An angle between the mean line and a line parallel to the engine axis at the leading and trailing edges defines gas flow entry angles, α, and exit angles, β. Airfoil inlet and exit angles are substantially in accordance with inlet angle values, α, and exit angle values, β, set forth in one of Tables 1, 2, 3, and 4.
Abstract:
A rim seal arrangement for a gas turbine engine includes a first seal face on a rotor component, and a second seal face on a stationary annular rim centered about a rotation axis of the rotor component. The second seal face is spaced from the first seal face along an axial direction to define a seal gap. The seal gap is located between a radially outer hot gas path and a radially inner rotor cavity. The first seal face has a plurality of circumferentially spaced depressions, each having a depth in an axial direction and extending along a radial extent of the first seal face. The depressions influence flow in the seal gap such that during rotation of the rotor component, fluid in the seal gap is pumped in a radially outward direction to prevent ingestion of a gas path fluid from the hot gas path into the rotor cavity.
Abstract:
A cooling system (10) positioned within a turbine airfoil (12) useable in a turbine engine and having cooling channels (16) positioned within a platform (18) of the turbine airfoil (12) with exhaust outlets (20) at the pressure and suction side edges (22, 24) to prevent hot gas ingestion under the platform (18) is disclosed. The cooling channels (16) may be formed from main channels (26) extending from cooling fluid supply channels (64) aligned with the airfoil (12) and branch channels (30) extending between the main channels (26) and the pressure or suction side edges (22, 24). The cooling system (10) reduces the cooling surface area adjacent to the airfoil fillet (32) at the intersection (34) of the platform (18) and airfoil (12) and increases cooling surface area adjacent to the pressure side and suction side mate faces (22, 24) as compared with conventional designs. Such configuration of the cooling system (10) yields a more uniform platform temperature distribution, colder and higher pressure cooling air for platform cooling and less manufacturing expense than conventional designs.
Abstract:
Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting asymmetric non-parallel walls or trapezoidal cross section ridges that reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. In some embodiments at least one angularly oriented first groove formed in the ridge plateau is adapted for angular orientation upstream a turbine blade rotation direction to resist blade tip airflow leakage and the ridges are separated by second grooves that are skewed relative to the respective ridge plateaus and the substrate that are also adapted for orientation upstream the turbine blade rotation direction to resist blade tip airflow leakage.
Abstract:
An airfoil for a gas turbine engine in which the airfoil includes an internal cooling system formed from one or more midchord cooling channels with a corrugated insert positioned therein and creating nearwall leading edge, pressure side and suction side nearwall cooling channels. The corrugated insert may be formed from a wall that oscillates in a repeating pattern between peaks and valleys, such that the peaks are closer to an inner surface of the outer wall forming the generally elongated hollow airfoil The corrugated insert may work in concert with the rows of partition walls to create periodic impingement on the inner surface of the outer wall Such cooling system provides adequate cooling for use in environments in which few, if any, cooling holes are desired, such as in crude oil engine applications
Abstract:
A seal assembly between a hot gas path and a disc cavity in a turbine engine includes a non-rotatable vane assembly including a row of vanes and an inner shroud, a rotatable blade assembly axially adjacent to the vane assembly and including a row of blades and a turbine disc that forms a part of a turbine rotor, and an annular wing member located radially between the hot gas path and the disc cavity. The wing member extends generally axially from the blade assembly toward the vane assembly and includes a plurality of circumferentially spaced apart flow passages extending therethrough from a radially inner surface thereof to a radially outer surface thereof. The flow passages each include a portion that is curved as the passage extends radially outwardly to effect a scooping of cooling fluid from the disc cavity into the flow passages and toward the hot gas path.
Abstract:
Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting rows of stepped first ridges in planform patterns, to reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. Each stepped first ridge has a first portion proximal the substrate surface with a pair of first opposed lateral walls terminating in a plateau, and a second portion terminating in a ridge tip. These ridge or rib embodiments have first lower and second upper wear zones. The lower zone, which at and below first portion height, optimizes engine airflow characteristics, while the upper zone, between the plateau and the second portion ridge is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone.
Abstract:
A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.
Abstract:
An abradable turbine component, a method of creating a turbine component with an abradable mesh structure, and a gas turbine engine are provided. The abradable turbine component includes a turbine component surface for coupling to a turbine casing, and a deposited abradable mesh structure coupled to the turbine component surface. The abradable mesh structure includes interlacing strands of material, each strand including a height relative to the turbine component surface. At least two of the plurality of interlacing strands include a height different from each other. The method includes applying a bond coat layer followed by a thermal barrier coating layer. An abradable mesh structure is deposited on top of thermal barrier coating wherein the abradable mesh structure includes interlacing strands of material wherein at least two of the interlacing strands include a height different from each other. A gas turbine engine including the abradable turbine component is also provided.