Abstract:
A wireless tire pressure monitoring system includes a monitoring main unit installed in the truck-tractor of a towing vehicle, a receiving antenna electrically connected to the monitoring main unit, and a register set in a location within the wireless communication transmission range of the receiving antenna and stored with an ID code and location code of each sensor at each wheel of the platform of the towing vehicle. When the register receives a triggering signal containing an identification code of the monitoring main unit, the register compares and matches the identification code and the location code of every wheel of the platform with the identification code of the monitoring main unit and then sends matched data in the form of a wireless packet to the receiving antenna for enabling the monitoring main unit to recognize the installation location of every wheel of the platform of the towing vehicle.
Abstract:
A signal transmission device is used for connection between a first electrical connector at a truck-tractor of a towing vehicle and a second electrical connector at a trailer of the towing vehicle. The signal transmission device includes first and second magnetic holders, third and fourth electrical connectors mounted to the first and second magnetic holders respectively, a stretchable coil tube, and a cable. The first magnetic holder is adapted to be attached to the truck-tractor and the second magnetic holder is adapted to be attached to the trailer. The third electrical connector is adapted for connecting the first electrical connector at the truck-tractor and the fourth electrical connector is adapted for connecting the second electrical connector at the trailer. The cable is spirally inserted through the stretchable coil tube and provided with two ends electrically connected with the third and fourth electrical connectors.
Abstract:
A method and device for monitoring video signal transmission includes a signal encoding and transmitting module and the signal receiving module. The signal encoding and transmitting module receives a composite video signal from a video signal source to cut off a horizontal video data series following a predetermined horizontal synchronization signal following a predetermined vertical synchronization signal and add an identification code. The signal receiving module receives the composite video signal carrying the identification code and compares the identification code to transmit the composite video signal out when the identification code is correct.
Abstract:
The present invention provides a wireless tire pressure and tire temperature detecting system, using a wireless monitoring and transmission device with a centrifugal switch. When the tire rotational speed of the car reaches a certain speed, it turns on the centrifugal switch. The centrifugal switch is used to turn on the entire wireless monitoring and transmission device to detect, process signal, and transmit. The wireless monitoring and transmission device is not working, until the tire rotational speed of the car reaches a certain speed before it is initiated and causes power consumption. The present invention saves more power consumption than the conventional structure, which extends the shelf life of the wireless tire pressure and temperature detecting system as well as time involved to change the battery, which is practical and convenient.
Abstract:
A method and device for monitoring video signal transmission includes a signal encoding and transmitting module and the signal receiving module. The signal encoding and transmitting module receives a composite video signal from a video signal source to cut off a horizontal video data series following a predetermined horizontal synchronization signal following a predetermined vertical synchronization signal and add an identification code. The signal receiving module receives the composite video signal carrying the identification code and compares the identification code to transmit the composite video signal out when the identification code is correct.
Abstract:
The present invention is a tire pressure monitoring system (TPMS) with a capped tire valve. The system includes a baseplate, a signal transmitter, a cap, and an antenna. The antenna is assembled at the bottom of the baseplate, and also positioned outside the connecting end of the baseplate. Thus, the volume of TPMS is considerably reduced, providing resistance to collision and pollution with improved applicability.
Abstract:
A packet processing method used in a wireless communication is disclosed to have the packet data not to contain the identification code of the transmitter and to let the receiver read out the correct identification code of the transmitter and verify the effectiveness of the data, assuring excellent confidentiality of the data, reducing packet size, maintaining packet data integrity, extending wireless communication distance and saving power consumption. Under the fix bit error rate, the invention effectively reduces the chance of erroneous data and lowers the current loading to the battery of each of the transmitter and the receiver.
Abstract:
For installation in the chassis of a car to receive a tire pressure signal from a sensor and transmitter unit wirelessly and to transmit the signal to a display device in the driver's cab of the car through a cable, a receiving antenna for receiving tire pressure signal is disclosed to include a base, a circuit board mounted in the base and spaced the bottom side of the base at a distance over 1 cm, and a top cover covering the base. The circuit board has a metal signal receiving line arranged on the substrate thereof. The signal receiving line has a receiving segment arranged on the top wall of the substrate near one end and extending around a rectangular area of the top wall a number of turns from an inner side toward an outer side, a lead-out segment extending from the outer end of the receiving segment to a predetermined distance in direction toward the other end of the substrate, and a connection segment extended from the lead-out segment to a connection terminal at the second end of the substrate and having a width greater than the lead-out segment.
Abstract:
An attached tire pressure sensor and air nozzle assembly includes an air nozzle for installation in the rim of a vehicle wheel, an attached tire pressure sensor threadedly coupled with the air nozzle for sensing the tire pressure of the vehicle wheel, and an anti-loosing device sandwiched between the air nozzle and the attached tire pressure sensor. The anti-loosing device has a rigid base stopped against the air nozzle, and a curved spring washer stopped against the attached tire pressure sensor to provide a spring force to the air nozzle and the attached tire pressure for preventing the attached tire pressure sensor from loosing from the air nozzle upon receiving vibration or accidental impact of the vehicle wheel during running of the vehicle.
Abstract:
An attached tire pressure sensor and air nozzle assembly includes an air nozzle for installation in the rim of a vehicle wheel, an attached tire pressure sensor threadedly coupled with the air nozzle for sensing the tire pressure of the vehicle wheel, and an anti-loosing device sandwiched between the air nozzle and the attached tire pressure sensor. The anti-loosing device has a rigid base stopped against the air nozzle, and a curved spring washer stopped against the attached tire pressure sensor to provide a spring force to the air nozzle and the attached tire pressure for preventing the attached tire pressure sensor from loosing from the air nozzle upon receiving vibration or accidental impact of the vehicle wheel during running of the vehicle.