Abstract:
A load driving circuit comprises a converting circuit, a converting controller, a load driving modulator, and a charge spike protection circuit. The converting circuit is adapted to be coupled to an output power source and supplies a driving power source to drive a load. The converting circuit has an output capacitance coupled to an output end thereof. The converting controller controls an amount of the driving power source responsive to a current or a voltage of the load. The load driving modulator and the load, connected in series, are coupled to the output end and so the load driving modulator adjusts an electronic state of the load. The charge spike protection circuit is coupled to the output capacitance and at least one connecting node of the load and the load driving modulator to provide a unidirectional charge release path to the output capacitance.
Abstract:
An LED driving circuit comprises a converting circuit, a current regulator, a converting controller and a low dimming protection blocking circuit, is disclosed. The converting circuit is adapted to perform a power conversion to provide a driving voltage for lighting an LED module. The current regulator is coupled to the LED module for regulating a current flowing through the LED module. The current regulator conducts and stops conducting the current flowing through the LED module according to a dimming signal, and executes a protection process when the LED module operates abnormal. The converting controller controls the power conversion of the converting circuit according to a voltage level of at least one connection node of the current regulator and the LED module. The low dimming protection blocking circuit stops the protection process of the current regulator when the driving voltage is lower than a predetermined value.
Abstract:
An LED driving circuit comprises a converting circuit, a current regulator, a converting controller and a low dimming protection blocking circuit, is disclosed. The converting circuit is adapted to perform a power conversion to provide a driving voltage for lighting an LED module. The current regulator is coupled to the LED module for regulating a current flowing through the LED module. The current regulator conducts and stops conducting the current flowing through the LED module according to a dimming signal, and executes a protection process when the LED module operates abnormal. The converting controller controls the power conversion of the converting circuit according to a voltage level of at least one connection node of the current regulator and the LED module. The low dimming protection blocking circuit stops the protection process of the current regulator when the driving voltage is lower than a predetermined value.
Abstract:
A current detecting circuit detects a resonant current in a primary side of a resonant converting circuit to generate a current detecting signal. An output detecting circuit generates a feedback signal according to the output voltage. A resonant controller generates a clock signal and adjusts an operating frequency of the clock signal in response to the feedback signal for modulating the output voltage of the resonant circuit. The resonant controller includes a resonance deviation protection unit which detects the current detecting signal according to a phase of the clock signal to determine whether the resonant circuit enters a region of zero current switching or not. When the resonant circuit enters the region of zero current switching, the resonant controller executes a corresponding protection process in response to that the resonant controller operates in a starting mode or a normal operating mode.
Abstract:
Disclosed is a feedback detection circuit, adapted to provide a feedback detection signal wherein a converting circuit provides a driving power source to drive a load according to the feedback detection signal. The feedback detection circuit comprises an operational conversion circuit and a signal limitation circuit. The operational conversion circuit generates the feedback detection signal in response to a level of a detected node of the load. The operational conversion circuit has an operational amplifier, which modulates the level of the feedback detection signal in response to the level of the detected node. The signal limitation circuit is coupled to the operational conversion circuit for clamping a level rang of the feedback detection signal.
Abstract:
A multi-phase DC-DC converter and a method of controlling a multi-phase DC-DC converter are disclosed. The multi-phase DC-DC converter is adapted to control a plurality of channels in a multi-phase DC-DC converting circuit for providing an output voltage. The multi-phase DC-DC converter comprises a constant on unit, a plurality of PWM units and a pulse width logic unit. The constant on unit determines a time point of generating a turning on signal indicative of a preset time period according to the output voltage. Each PWM unit generates a PWM signal, and a pulse width thereof is determined according to the turning on signal and currents of the channels. The pulse width logic unit controls the channels according to the corresponding PWM signals generated by the plurality of PWM units.
Abstract:
A pulse width modulation signal controlling apparatus including a signal pin, a core circuit, a setting judging circuit, a signal adjusting and selecting circuit, and a timer circuit is disclosed. The signal pin is connected to a setting device for receiving an external input signal. The setting judging circuit receives and compares a setting signal with a reference value to generate a setting judgment result. The signal adjusting and selecting circuit couples the signal pin to the setting judging circuit and adjusts the external input signal into the setting signal according to the setting device in a first state, and couples the signal pin to the core circuit in a second state. The timer circuit controls the state of the signal adjusting and selecting circuit, wherein the timer circuit sets the signal adjusting and selecting circuit in the first state during a predetermined time period.
Abstract:
An exemplary embodiment of the invention provides a set of an initial value of an error amplifying signal in the feedback control circuit for feedback control, so as to reduce the time and the amplitude of oscillation of the error amplifying signal. Accordingly, a feedback control circuit and a power converting circuit provided in an exemplary embodiment of the invention not only reduce the degree and the time of overshoot but also provide accurate and stable feedback control.
Abstract:
A constant on-time period of a DC to DC buck converting controller is adjusted according to a level of a preset output voltage. Therefore, the DC to DC buck converting controller of the present invention is suitable for any applications with different requests of output voltages or different operating mode.
Abstract:
An LED driving circuit includes a first and a second LED modules, a first and a second switching converters, an extreme voltage detecting and selecting circuit, a current balance circuit and a controller. The first switching converter transforms electric power of an input power supply into a first output voltage for lighting the first LED module. The second switching converter transforms electric power of the input power supply into a second output voltage for lighting the second LED module. The current balance circuit balances the currents flowing through the first and the second LED modules. The extreme voltage detecting and selecting circuit detects the first and the second LED modules and selects to output one of detecting results. The controller controls the transforming of the first switching converter and the second switching converter to light the first and the second LED modules in response to the outputted detecting result.