Abstract:
A data reader may be configured at least with a magnetic stack that has a first magnetic layer separated from a second magnetic layer by a non-magnetic spacer layer. The first magnetic layer may have an areal extent on an air bearing surface (ABS) that differs from the second magnetic layer while the second magnetic layer can be configured with a first plurality of linear sidewalls that are each angled with respect to a second plurality of linear sidewalls of the first magnetic layer.
Abstract:
A data reader may be configured at least with a magnetic stack positioned on an air bearing surface (ABS) and contacting a spin depolarizing layer that is a minority spin current carrier. The spin depolarizing layer can have a thickness and spin diffusion length corresponding to a net zero spin polarization at an interface of the magnetic stack and spin depolarizing layer.
Abstract:
A data storage device may be generally directed to a data transducing head capable of magnetoresistive data reading. Such a data transducing head may be configured with at least a trilayer reader that contacts and is biased by a coupling feature. The coupling feature may have a smaller extent from an air bearing surface (ABS) than the trilayer reader.
Abstract:
A data storage device may be generally directed to a data transducing head capable of magnetoresistive data reading. Such a data transducing head may be configured with at least a trilayer reader that contacts and is biased by a coupling feature. The coupling feature may have a smaller extent from an air bearing surface (ABS) than the trilayer reader.
Abstract:
A data reader may be configured at least with detector and injector stacks that each has a common spin accumulation layer. The detector stack may positioned on an air bearing surface (ABS) while the injector stack is positioned distal the ABS. The injector stack can have a diffusive layer with a larger spin diffusion length than mean free path.
Abstract:
A data reader may be configured at least with detector and injector stacks that each has a common spin accumulation layer. The detector stack may positioned on an air bearing surface (ABS) while the injector stack is positioned distal the ABS. The injector stack can have a diffusive layer with a larger spin diffusion length than mean free path.
Abstract:
An apparatus can be generally directed to a magnetic stack having a magnetically free layer positioned on an air bearing surface (ABS). The magnetically free layer can be biased to a predetermined magnetization in various embodiments by a biasing structure that is coupled with the magnetically free layer and positioned distal the ABS.
Abstract:
A data reader may be configured at least with a magnetic stack positioned on an air bearing surface (ABS) and contacting a spin depolarizing layer that is a minority spin current carrier. The spin depolarizing layer can have a thickness and spin diffusion length corresponding to a net zero spin polarization at an interface of the magnetic stack and spin depolarizing layer.
Abstract:
An apparatus can be generally directed to a magnetic stack having a magnetically free layer positioned on an air bearing surface (ABS). The magnetically free layer can be biased to a predetermined magnetization in various embodiments by a biasing structure that is coupled with the magnetically free layer and positioned distal the ABS.
Abstract:
A read head includes a bottom shield and a bottom isolation layer that electrically isolates the bottom shield. The read head includes left and right reader stacks having respective bottom layers disposed on at least a portion of the bottom isolation layer. The left and right reader stacks are cross-track adjacent to one another. The read head also includes left and right bottom contacts electrically coupled to respective left and right bottom layers. A top shield is configured as a common top contact electrically coupled to respective top layers of the left and right reader stacks.