Abstract:
A method for identifying and predicting well pressure control events includes pumping fluid into a wellbore and collecting fluid returning from the wellbore. A first parameter related to a rate of flow of fluid pumped into the wellbore is measured. A second parameter related to a rate of flow of fluid out of the wellbore is measured. The first and second parameters and selected properties of the fluid are used to calculate an equivalent density of the fluid during pumping (ECD) and when pumping is stopped (ESD). An alarm when at least one of the following occurs: ECD is at least equal to a fracture pressure of at least one formation in the wellbore, ESD is at most equal to a fluid pore pressure of at least one formation in the wellbore, and ESD is at most equal to a collapse pressure of the wellbore.
Abstract:
A method for monitoring condition of a wellbore includes initializing a value of at least one parameter having a relationship to likelihood of a drill string becoming stuck in a wellbore (the HCF). During drilling operations, at least one drilling parameter having a determinable relationship to the HCF is measured. In a computer, the value of the HCF is recalculated based on the at least one measured parameter. The initial value of the HCF and the recalculated values of the HCF are displayed to a user.
Abstract:
A method for moving fluid through a pipe in a wellbore includes placing at least two different fluids in the pipe and in an annular space between the pipe and the wellbore. Fluid is pumped into the pipe at a rate to achieve a desired set of conditions. Using a predetermined volume distribution of the annular space, an axial position of each of the at least two fluids in the annular space during the pumping the displacement fluid is calculated.
Abstract:
A method for monitoring condition of a wellbore includes initializing a value of at least one parameter having a relationship to likelihood of a drill string becoming stuck in a wellbore (the HCF). During drilling operations, at least one drilling parameter having a determinable relationship to the HCF is measured. In a computer, the value of the HCF is recalculated based on the at least one measured parameter. The initial value of the HCF and the recalculated values of the HCF are displayed to a user.
Abstract:
A method for moving fluid through a pipe in a wellbore includes placing at least two different fluids in the pipe and in an annular space between the pipe and the wellbore. Fluid is pumped into the pipe at a rate to achieve a desired set of conditions. Using a predetermined volume distribution of the annular space, an axial position of each of the at least two fluids in the annular space during the pumping the displacement fluid is calculated.
Abstract:
A method for detecting an influx and/or loss of circulation in a wellbore, comprising measuring a condition in the wellbore using a downhole sensor; determining that a positive displacement pump is shut off or turned on; predicting pit volume and/or gas concentration at a plurality of time points after the positive displacement pump is shut off or turned on using the measured condition in the wellbore prior to the positive displacement pump is shut off or turned on, wherein the measured condition correlates with the pit volume and/or gas concentration; measuring pit volume and/or gas concentration at the plurality of time points; comparing the predicted and the measured pit volumes and/or gas concentrations at the plurality of time points; and producing a warning signal if the difference between the predicted and the measured pit volumes and/or gas concentrations is greater than a pre determined value.
Abstract:
Systems, methods, and computer-readable media for drilling. The method includes receiving a drilling model of a drilling system including a drill string, selecting a frequency and amplitude for axial vibration of the drill string based on the drilling model, and generating the axial vibration substantially at the frequency and the amplitude selected by modulating a hookload or axial movement at a surface of the drill string.
Abstract:
A method for optimizing drilling includes initializing values of a plurality of drilling operating parameters and drilling response parameters. In a computer, an initial relationship between the plurality of drilling operating parameters and drilling response parameters is determined. A drilling unit to drill a wellbore through subsurface formations. The drilling operating parameters and drilling response parameters are measured during drilling and entered into the computer. A range of values and an optimum value for at least one of the drilling response parameters and at least one of the drilling response parameters is determined in the computer. A display of the at least one of the plurality of drilling operating parameters and the at least one of the drilling response parameters is generated by the computer.
Abstract:
A method can include acquiring data associated with a field operation in a geologic environment; processing the data by partitioning operationally and representing symbolically; formulating a symbolic query for an operating procedure specification; performing a search of the symbolically represented data utilizing the symbolic query and a probabilistic chain model; receiving a search result responsive to the search; assessing compliance with the operation procedure specification utilizing the search result; and issuing a control signal to field equipment utilizing the assessment of compliance.
Abstract:
Systems, methods, and computer-readable media for drilling. The method includes receiving a drilling model of a drilling system including a drill string, selecting a frequency and amplitude for axial vibration of the drill string based on the drilling model, and generating the axial vibration substantially at the frequency and the amplitude selected by modulating a hookload or axial movement at a surface of the drill string.