Abstract:
A method includes drawing formation fluid from a formation into a pressure test chamber of a downhole tool while the downhole tool is positioned at a location within a wellbore. The method also includes, while the downhole remains positioned at the location, measuring pressure of the formation fluid drawn into the pressure test chamber and operating a first pump to route additional formation fluid from the formation through the downhole tool and out into the wellbore. Still further, the method includes operating a second pump to expel the formation fluid from the pressure test chamber and to mix the formation fluid with the additional formation fluid such that the formation fluid expelled from the pressure test chamber is also routed through the downhole tool and out into the wellbore along with the additional formation fluid.
Abstract:
The present discloses valve systems that include valve shift detection systems that can be employed to determine when a valve has shifted. In certain embodiments, the valve shift detection systems include a switch integrated into a valve block that may be closed upon shifting of the spool valve. In certain embodiments, the switch may include a component that completes a circuit upon contacting the valve. The valve shift detection systems also may include a controller designed to detect a voltage or current change produced by completing the circuit.
Abstract:
A rotary check valve is disclosed having sealing surfaces between two sealing members that engage with a rotating shearing motion. The rotating shearing motion may shear debris between the sealing members and minimize or eliminate blockage of fluid passageways in the sealing members. In a closed position, the upper sealing member and lower sealing member are rotated such that fluid passageways in the upper sealing member and fluid passageways in the lower sealing member are not aligned and blocked by the sealing surfaces. The sealing members of the rotary check valve may be biased to a closed position via a spring.
Abstract:
An apparatus for extending the operational flow rate range of a turbine is described herein. Two or more removable sleeves may be used to change the cross-sectional area of a turbine. Each removable sleeve may define or eliminate the stator gap between a stator blade tip and an inner wall of the removable sleeve and a rotor gap between a rotor blade tip and an inner wall of the removable sleeve. A movable sleeve may be disposed in the turbine and may move between a first position and a second position in response to changes in the pressure differential across the turbine. The movable sleeve may define or eliminate a stator gap between a stator blade tip and the inner conical surface of the sleeve or a hub of the turbine and a rotor gap between a rotor blade tip and the inner conical surface of the sleeve.
Abstract:
A downhole modular tool includes a first module, a second module, a third module, and one or more connectors for connecting the first, second, and third modules. Each module includes a drill collar, a drilling fluid passageway, a first fluid passageway, and a second fluid passageway. The one or more connectors connect any one of the first, second, and third modules, to another of the first, second, and third modules to transfer the drilling fluid, the first fluid, and the second fluid between the connected modules.
Abstract:
A rotary check valve is disclosed having sealing surfaces between two sealing members that engage with a rotating shearing motion. The rotating shearing motion may shear debris between the sealing members and minimize or eliminate blockage of fluid passageways in the sealing members. In a closed position, the upper sealing member and lower sealing member are rotated such that fluid passageways in the upper sealing member and fluid passageways in the lower sealing member are not aligned and blocked by the sealing surfaces. The sealing members of the rotary check valve may be biased to a closed position via a spring.
Abstract:
The present disclosure relates to valve systems that include valve shift detection systems that can be employed to determine when a valve has shifted. According to certain embodiments, the valve shift detection systems may include a switch integrated into a valve block that may be closed upon shifting of the spool valve. In certain embodiments, the switch may include a component that completes a circuit upon contacting the valve. The valve shift detection systems also may include a controller designed to detect a voltage or current change produced by completing the circuit.
Abstract:
A drilling system includes a downhole sampling tool configured to be placed in a wellbore of a subterranean formation and configured to pump formation fluid from the subterranean formation into the downhole sampling tool. The downhole sampling tool includes internal components configured to route the formation fluid through the downhole sampling tool and drill collars configured to hold the internal components of the downhole sampling tool. The downhole sampling tool also includes at least one coupon made from a material that is optically reactive to hydrogen sulfide (H2S). The coupon is disposed in a location that is exposed to the formation fluid that is pumped into the downhole sampling tool, and the location of the coupon is accessible from outside the downhole sampling tool without removing the internal components from the drill collars.
Abstract:
An apparatus for extending the operational flow rate range of a turbine is described herein. Two or more removable sleeves may be used to change the cross-sectional area of a turbine. Each removable sleeve may define or eliminate the stator gap between a stator blade tip and an inner wall of the removable sleeve and a rotor gap between a rotor blade tip and an inner wall of the removable sleeve. A movable sleeve may be disposed in the turbine and may move between a first position and a second position in response to changes in the pressure differential across the turbine. The movable sleeve may define or eliminate a stator gap between a stator blade tip and the inner conical surface of the sleeve or a hub of the turbine and a rotor gap between a rotor blade tip and the inner conical surface of the sleeve.
Abstract:
A downhole modular tool includes a first module, a second module, a third module, and one or more connectors for connecting the first, second, and third modules. Each module includes a drill collar, a drilling fluid passageway, a first fluid passageway, and a second fluid passageway. The one or more connectors connect any one of the first, second, and third modules, to another of the first, second, and third modules to transfer the drilling fluid, the first fluid, and the second fluid between the connected modules.