Abstract:
A liquid ejecting apparatus includes pressure chambers that communicate with nozzles and an element that varies liquid pressure inside the pressure chamber in accordance with variation in a potential. An ejection pulse generating unit generates a first ejection pulse applied to the element upon ejecting first liquid droplets from the nozzles and a second ejection pulse applied to the element upon ejecting subsequent, second ejection droplets. The first ejection pulse excites the liquid inside the pressure chamber to pressure vibration and then allows the element to eject liquid droplets from the nozzles when the pressure of the liquid inside the pressure chamber reaches a predetermined pressure. The second ejection pulse excites the liquid to pressure vibration and then allows the element to eject the liquid droplets from the nozzles at certain time when the pressure of the liquid becomes lower than the predetermined pressure.
Abstract:
To reduce the number of nozzles in an unstable state after a nozzle inspection, a fluid discharge device includes a discharge head capable of discharging a fluid from nozzle, a nozzle inspection process for inspecting a state of discharging of the fluid from the nozzle, and a controller for subjecting the nozzle to a pre-process for discharging the fluid under a discharge condition that a nozzle in an unstable state be put into a dot omission state, subsequently discharging the fluid for the sake of inspection, and executing an inspection process by the nozzle inspection part.
Abstract:
A liquid ejecting apparatus includes a liquid ejecting head with a group of nozzles. The liquid ejecting apparatus drives a pressure generating element to generate pressure variation in a liquid in a pressure generating chamber and ejects the liquid from the nozzles using the pressure variation. A driving signal generating unit generates a driving signal including an ejection driving pulse which drives the pressure generating element. An ejection control unit controls application of the ejection driving pulse to the pressure generating element to control a liquid ejecting operation of the liquid ejecting head. The driving signal generating unit generates first and second ejection driving pulses. The ejection control unit calculates a timing at which the amount of the ejected liquid becomes a predetermined correction target value in transition of the ejected liquid amount of each nozzle from a start of the ejecting operation.