摘要:
A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
摘要:
A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
摘要:
A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
摘要:
A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
摘要:
A scintillation compound can include a rare earth element that is in a divalent (RE2+) or a tetravalent state (RE4+). The scintillation compound can include another element to allow for better change balance. The other element may be a principal constituent of the scintillation compound or may be a dopant or a co-dopant. In an embodiment, a metal element in a trivalent state (M3+) may be replaced by RE4+ and a metal element in a divalent state (M2+). In another embodiment, M3+ may be replaced by RE2+ and M4+. In a further embodiment, M2+ may be replaced by a RE3+ and a metal element in a monovalent state (M1+). The metal element used for electronic charge balance may have a single valance state, rather than a plurality of valence states, to help reduce the likelihood that the valance state would change during formation of the scintillation compound.
摘要:
The invention relates to a scintillator material comprising a cerium-doped rare-earth silicate, characterized in that its absorbance at a wavelength of 357 nm is less than its absorbance at 280 nm. This material has an afterglow of generally less than 200 ppm after 100 ms relative to the intensity measured during an X-ray irradiation. It is preferably codoped. It may be obtained using an oxidizing anneal. It is particularly suited to integration in an ionizing particle detector that may be used in a medical imaging apparatus.