Abstract:
A light emitting device package includes a cell array including a plurality of semiconductor light emitting units, and having a first surface and a second surface opposite the first surface, each of the plurality of semiconductor light emitting units having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer stacked on each other. The light emitting device package may further include a plurality of wavelength conversion units disposed on the first surface of the cell array to correspond to the plurality of semiconductor light emitting units, respectively, each configured to convert a wavelength of light, emitted by a respective one of the plurality of semiconductor light emitting units, into a different wavelength of light, and a partition structure disposed in a space between the plurality of wavelength conversion units, and a plurality of switching units spaced apart from the plurality of wavelength conversion units within the partition structure, and electrically connected to the plurality of semiconductor light emitting units.
Abstract:
A light emitting device package includes a cell array including a plurality of semiconductor light emitting units, and having a first surface and a second surface opposite the first surface, each of the plurality of semiconductor light emitting units having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer stacked on each other. The light emitting device package may further include a plurality of wavelength conversion units disposed on the first surface of the cell array to correspond to the plurality of semiconductor light emitting units, respectively, each configured to convert a wavelength of light, emitted by a respective one of the plurality of semiconductor light emitting units, into a different wavelength of light, and a partition structure disposed in a space between the plurality of wavelength conversion units, and a plurality of switching units spaced apart from the plurality of wavelength conversion units within the partition structure, and electrically connected to the plurality of semiconductor light emitting units.
Abstract:
A semiconductor light emitting device includes a first conductive semiconductor layer, an active layer, a second conductive semiconductor layer, a first internal electrode, a second internal electrode, an insulating part, and first and second pad electrodes. The active layer is disposed on a first portion of the first conductive semiconductor layer, and has the second conductive layer disposed thereon. The first internal electrode is disposed on a second portion of the first conductive semiconductor layer separate from the first portion. The second internal electrode is disposed on the second conductive semiconductor layer. The insulating part is disposed between the first and second internal electrodes, and the first and second pad electrodes are disposed on the insulating part to connect to a respective one of the first and second internal electrodes.
Abstract:
A light emitting device package includes a cell array including a plurality of semiconductor light emitting units, and having a first surface and a second surface opposite the first surface, each of the plurality of semiconductor light emitting units having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer stacked on each other. The light emitting device package may further include a plurality of wavelength conversion units disposed on the first surface of the cell array to correspond to the plurality of semiconductor light emitting units, respectively, each configured to convert a wavelength of light, emitted by a respective one of the plurality of semiconductor light emitting units, into a different wavelength of light, and a partition structure disposed in a space between the plurality of wavelength conversion units, and a plurality of switching units spaced apart from the plurality of wavelength conversion units within the partition structure, and electrically connected to the plurality of semiconductor light emitting units.
Abstract:
A method of fabricating a light emitting device package includes forming a plurality of semiconductor light emitting parts, each having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer on a growth substrate, forming a partition structure having a plurality of light emitting windows on the growth substrate, filling each of the plurality of light emitting windows with a resin having a phosphor, and forming a plurality of wavelength conversion parts by planarizing a surface of the resin.
Abstract:
A light emitting diode display device is provided. The light emitting diode display device includes a first light emitting diode pixel including a first light emitting diode layer and a first color conversion material on the first light emitting diode layer, a second light emitting diode pixel including a second light emitting diode layer and a second color conversion material on the second light emitting diode layer, a separation film disposed between the first light emitting diode layer and the second light emitting diode layer and a partition disposed between the first color conversion material and the second color conversion material and including a partition material, wherein the first and second light emitting diode pixels are divided by the separation film and the partition, the partition is disposed on the separation film in alignment with the separation film such that the partition includes linear portions that extend in a first direction and the separation film includes linear portions that also extend in the first direction and vertically overlap the linear portions of the partition, and the partition material includes an insulating material different from silicon.
Abstract:
A method of fabricating a light emitting device package includes forming a plurality of semiconductor light emitting parts, each having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer on a growth substrate, forming a partition structure having a plurality of light emitting windows on the growth substrate, filling each of the plurality of light emitting windows with a resin having a phosphor, and forming a plurality of wavelength conversion parts by planarizing a surface of the resin.