Abstract:
A gateway and method thereof are provided to communicate with sensor nodes. The gateway includes a generator configured to generate, based on schedule information on a previous uplink interval, response data. The gateway also includes an allocator configured to allocate a subsequent uplink interval to the sensor nodes to generate schedule information on the subsequent uplink interval. The gateway includes a transmitter configured to transmit the response data and the schedule information on the subsequent uplink interval to the sensor nodes.
Abstract:
An accessory for remote monitoring, including: a body capable of being placed on a human body; a measurement unit installed in the body and measuring a change in surroundings; a signal processing unit for processing a signal acquired from the measurement unit; and a wireless communication unit including a monopole antenna transmitting the signal processed by the signal processing unit and a ground installed along the body, corresponding to the monopole antenna. The signal processing unit and the monopole antenna are manufactured in a small size to be formed in the accessories body or periphery of the accessories body, and a space for wiring the ground may be obtained by using a band or the accessories body in an extended shape.
Abstract:
A method of calculating an amount of exercise performed includes measuring noise based on a relative difference in displacement between a skin of a user and a sensor attached to the skin of the user, and determining a number of steps taken by the user based on the measured noise.
Abstract:
An apparatus and method of removing common mode noise in the case of measuring a biosignal using a capacitive coupling active electrode (CCE) is provided. A frequency band of a common mode signal may interact with a shield voltage and thus, a frequency band of a biosignal may be compensated for.
Abstract:
A headset device includes a headset body, a connection unit to move relative to the headset body, and a sensor unit having a light emitting element and a light receiving element to sense a biosignal, the sensor unit mounted to the connection unit to make contact with a human body. The sensor unit may measure a biosignal of a user, and the headset body and the sensor unit are indirectly connected by the connection unit. Accordingly, the sensor unit may be isolated from movement or vibration received through the headset body.
Abstract:
Disclosed are a biosignal measurement device and a capacitively-coupled active electrode. The capacitively-coupled active electrode includes an electrode face configured to form capacitive coupling with a subject in a non-contact manner to detect a biosignal, and a pre-amplifier disposed on a rear side of the electrode face and embedded in a porous insulator.
Abstract:
An antenna and a method of manufacturing the antenna are provided. The antenna may include an antenna surface, a ground plane, and an air layer comprising a porous structure.