Abstract:
A photon-counting detector configured to detect photons included in multi-energy radiation. The photon-counting detector includes a pixel area configured to absorb photons incident thereto, and bias circuits configured to supply one of a bias voltage and a bias current to electronic devices in the pixel area, wherein the bias circuits are in the pixel area.
Abstract:
A driver circuit outputs a result of classifying and counting photons based on one or more energy levels to a column line. The driver circuit includes a multiplexer for receiving the result from a counter, a driving inverter for receiving a signal from the multiplexer and a power supply, and a switch connected between the power supply and an input terminal of the driving inverter.
Abstract:
A photomultiplier detector cell for tomography includes a detector unit and a readOUT unit. The detector unit is configured to generate a digitized detect signal in response to receives light having a certain range of wavelength. The readOUT unit is configured to generate an output signal corresponding to the detect signal generated by the detector unit and to transmit the output signal to an external circuit. The readOUT unit is configured to transmit the output signal to the external circuit right after the detect signal is received.
Abstract:
An X-ray detector may include a silicon substrate including a first area and a second area; a plurality of pixels in the first area configured to detect X-rays; a control pad in the second area configured to supply a common control signal to the plurality of pixels; and/or a power supply pad in the first area configured to supply a power supply voltage to groups of pixels grouped from among the plurality of pixels.
Abstract:
A method of calibrating a first threshold voltage that is a reference of X-ray detection for each unit cell of a plurality of unit cells of an X-ray detector may comprise detecting an X-ray by using a plurality of second threshold voltages for each of a plurality of X-rays having spectra at different energy levels; determining a correspondence relationship between energies having a maximum intensity in the spectra of X-rays and third threshold voltages at which a maximum number of photons having a same energy intensity are detected; and/or calibrating the first threshold voltage based on the determined correspondence relationship.