Abstract:
The present disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a higher data rate than that of a 4th generation (4G) communication system such as long-term evolution (LTE). A method for operating a device for adaptively changing or selecting a computing structure and wireless communication protocol structure can comprise the steps of: receiving a device capability information request message of the device from a base station; determining a device capability information message indicating the computing capability and protocol capability of the device; transmitting the device capability information message to the base station; and receiving a radio resource control (RRC) message on the basis of the computing structure and protocol structure configured by the base station.
Abstract:
Disclosed are: a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security, and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. Disclosed are a method and an apparatus for transmitting a signal by using a non-orthogonal frequency division multiplexing (NOFDM) scheme and, particularly, the present invention presents a method and an apparatus for transmitting a control signal and a reference signal by using an OFDM scheme and for transmitting data by using the NOFDM scheme.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of controlling a terminal according to one embodiment of the present invention may comprise the steps of receiving, from a base station, set information including information on a location of at least one resource to which a demodulation reference signal (DMRS) of a unicast signal is to be mapped; receiving a multicast signal and the unicast signal from the base station; decoding the multicast signal on the basis of the set information; and decoding the unicast signal on the basis of the decoded multicast signal.
Abstract:
The disclosure relates to a method, performed by a base station, for transmitting and receiving modulation signals in a wireless communication system, the method including: transmitting group modulation configuration information to a user equipment, receiving feedback information about a group modulation scheme from the user equipment; and determining a modulation and coding scheme (MCS), in consideration of the feedback information.
Abstract:
A terminal may obtain a parameter related to energy consumption of the terminal, determine a bit resolution value of an analog-to-digital converter (ADC) of the terminal for reducing the energy consumption of the terminal, and set the bit resolution value of the ADC as the determined bit resolution value.
Abstract:
A method and an apparatus for offloading data in a wireless communication system are provided. The method performed by a user equipment (UE) of offloading data includes determining a server for processing at least some of the data, receiving, from the server, a list regarding splitting points at which the data is splittable, determining, based on the list, at least one of the splitting points as an offloading point, transmitting, to the server, information about the offloading point and information about requirements for offloading data corresponding to the offloading point, receiving, from the server, a response as to whether the offloading data is capable of being processed, and determining whether the offloading data is to be processed, based on the response.
Abstract:
The disclosure relates to a communication technique of combining a 5G communication system to support a higher data transfer rate than in a 4G system with IoT technology, and a system thereof. The disclosure provides a terminal in a wireless communication system. The terminal includes at least one processor configured to: obtain a codebook set for the terminal; generate uplink signals by using a plurality of codebooks of the codebook set; and control at least one transceiver to transmit the uplink signals to a base station. A first uplink signal of a first resource among the uplink signals is generated based on a codeword of a first codebook among codebooks and a second uplink signal of a second resource adjacent to the first resource among the uplink signals is generated based on a codeword of a second codebook which is different from the first codebook among codebooks.
Abstract:
Disclosed are a method and an apparatus for grouping antennas in a multiple-input multiple-output antenna system. The method of the present invention comprises the steps of: measuring a channel vector for a plurality of antennas of a base station; grouping channel coefficients of the channel vector in accordance with a plurality of antenna grouping patterns and determining grouped codebook vectors corresponding to the grouped channel coefficients; selecting one of the antenna grouping patterns using the grouped codebook vectors for the antenna grouping patterns; and feeding back, to the base station, a pattern index indicating the selected antenna grouping pattern and a codebook index indicating the grouped codebook vector corresponding to the selected antenna grouping pattern.