Abstract:
A light guiding plate includes: a light guiding substrate; and a plurality of optical scattering patterns positioned on a first surface of the light guiding substrate. The plurality of optical scattering patterns respectively includes a binder, a scattering particle and a semiconductor nanocrystal. A color of light emitted from the plurality of optical scattering patterns is substantially the same.
Abstract:
Provided is a structure for a display apparatus. The structure for a display apparatus includes: a chassis having a plate shape and provided with a plurality of through holes; a reflection layer formed on one surface of the chassis: and at least one moisture barrier layer formed on the other surface of the chassis.
Abstract:
According to an exemplary embodiment, the present system and method provide a quantum dot sheet including: a color conversion film that includes quantum dots and a polymer layer in which the quantum dots are dispersed; a first barrier film that is provided one a planar surface of the color conversion film; and a phosphor pattern that has a portion located along an edge portion of the surface of the first barrier film. The phosphor pattern, which may be printed onto the quantum dot sheet, prevents deterioration of the color conversion performance of the quantum dot sheet that may occur due to oxidization.
Abstract:
A backlight assembly includes a light source portion including a plurality of light sources. The light sources are configured to emit light. A wavelength conversion member is disposed on the light source portion. The wavelength conversion member is configured to convert a wavelength of light emitted from the light source portion. The wavelength conversion member includes a first substrate disposed on the light source portion, a second substrate disposed on the first substrate, and a plurality of wavelength conversion layers interposed between the first substrate and the second substrate. Each of the plurality of wavelength conversion layers correspond to a light source of the plurality of light sources.
Abstract:
A reflection sheet of display backlighting unit is designed to be spaced apart by a predetermined gap distance from an overlying optical layer. However, the reflection sheet may inadvertently come into at least partial contact with the overlying optical layer. The reflection sheet is configured to avoid the creation of line contacts and wide area contacts with the optical layer. More specifically, the reflection sheet includes an upper skin layer having particles embedded therein. An average of surface roughness or height differences of the protrusions is caused to have a value of 15 μm or larger, and an interval between the adjacent protrusions is caused to be 200 μm or less.
Abstract:
A nanophosphor sheet is presented. The nanophosphor sheet may include a base layer, a plurality of core-shell phosphors dispersed in the base layer, and a coating layer surrounding at least one core-shell phosphor among the plurality of core-shell phosphors. Also presented is a backlight device that includes a light source emitting light, a light guide plate receiving the light, and a plurality of core-shell phosphors positioned to receive the light and convert the light to white light. The core-shell phosphors may be incorporated into the light guide plate or be positioned on the light guide plate as a separate layer.