Abstract:
A display device includes a pixel matrix having pixel rows and pixel columns and including pixels having switching elements positioned alternately at a corner near an upper and a lower side of each pixel row and positioned alternately at a corner near an upper and a lower side of and alternately at a corner near a left and a right side of each pixel column; multiple pairs of gate lines transmitting a gate-on voltage; and multiple data lines transmitting data voltages, wherein each pair of gate lines are disposed at the upper and lower sides of each pixel row with the pixels in each row connected to the gate line positioned nearest the respective switching element, and each data line is disposed between adjacent pairs of pixel columns and connected to pairs of pixels where one pixel of the pair has a switching element positioned nearest the respective data line.
Abstract:
A liquid crystal display device includes a first substrate, a first electrode on the first substrate, and a second electrode on the first substrate, spaced apart from the first electrode and overlapping at least a part of the first electrode. the second electrode includes a plurality of branch electrodes, and a coupling portion which couples the plurality of branch electrodes to each other. The coupling portion includes a longitudinal coupling portion extended in a length direction of the branch electrode and a transverse coupling portion extended in a width direction of the branch electrode. An edge portion of the first electrode is disposed between at least one of the plurality of branch electrodes and the longitudinal coupling portion, in a plan view.
Abstract:
A display device includes a pixel matrix having pixel rows and pixel columns and including pixels having switching elements positioned alternately at a corner near an upper and a lower side of each pixel row and positioned alternately at a corner near an upper and a lower side of and alternately at a corner near a left and a right side of each pixel column; multiple pairs of gate lines transmitting a gate-on voltage; and multiple data lines transmitting data voltages, wherein each pair of gate lines are disposed at the upper and lower sides of each pixel row with the pixels in each row connected to the gate line positioned nearest the respective switching element, and each data line is disposed between adjacent pairs of pixel columns and connected to pairs of pixels where one pixel of the pair has a switching element positioned nearest the respective data line.
Abstract:
A display apparatus includes: a plurality of pixel blocks, each pixel block of the plurality of pixel blocks including a first pixel electrode connected to a first switching element and a second pixel electrode connected to a second switching element; gate lines which extend along a first direction and include a first gate line connected to the first switching element and a second gate line connected to the second switching element; and data lines which extend along a second direction intersecting the first direction. A gate voltage is applied to the first gate line before the second gate line, and the first pixel electrode of each of the pixel blocks displays a same color.
Abstract:
A display apparatus includes: a plurality of pixel blocks, each pixel block of the plurality of pixel blocks including a first pixel electrode connected to a first switching element and a second pixel electrode connected to a second switching element; gate lines which extend along a first direction and include a first gate line connected to the first switching element and a second gate line connected to the second switching element; and data lines which extend along a second direction intersecting the first direction. A gate voltage is applied to the first gate line before the second gate line, and the first pixel electrode of each of the pixel blocks displays a same color.
Abstract:
Provided are a display panel which can detect a touch position derived from a user's touch and can prevent erroneous touch position data from being generated even when an erroneous connection to a position sensing line is present due a processing deviation or a cell gap deviation, and a manufacturing method of the same. The display panel includes a first substrate, a first sensor pad that is formed on the first substrate, a second sensor pad that is spaced apart from the first sensor pad, a second substrate that is disposed to face the first substrate, a first sensor spacer that is formed on the second substrate to overlap the first sensor pad and protrudes toward the first substrate, a second sensor spacer that is formed on the second substrate to overlap the second sensor pad and protrudes toward the first substrate, and a sensor electrode that is formed on the first sensor spacer and the second sensor spacer to overlap the first sensor pad and the second sensor pad, wherein the second sensor spacer protrudes toward the first substrate more than the first sensor spacer does.
Abstract:
A gate driving circuit and a display device having the same, a pull-up unit pulls up a current gate signal by using a first clock signal during a first period of one frame. A pull-up driver coupled to the pull-up unit receives a carry signal from one of the previous stages to turn on the pull-up unit. A pull-up unit receives a gate signal from one of the next stages, discharges the current gate signal to an off voltage level, and turns off the pull-up unit. A holder holds the current gate signal at the voltage level. An inverter turns on/off the holder in response to a first clock signal. A ripple preventer has a source and a gate coupled in common to an output terminal of the pull-up unit and a drain coupled to an input terminal of the inverter, and includes a ripple preventing diode for preventing a ripple from being applied to the inverter.
Abstract:
A gate driver includes multiple stages. Each stage has a circuit portion and a wiring portion. The wiring portion delivers first and second clock signals to the circuit portion. Further, the wiring portion includes first and second clock wirings receiving the first and second clock signal, respectively, first connecting wirings electrically connecting the first clock wiring with a first every other stage, and second connecting wirings electrically connecting the second clock wiring with the odd-numbered stages. Further, the wiring portion includes third connecting wirings electrically connecting the first connecting wiring with a second every other stage and fourth connecting wirings electrically connecting the second connecting wiring with the even-numbered stages. This configuration may prevent the gate driver from operating erroneously and reduce power consumed by the gate driver.
Abstract:
A liquid crystal display device includes a first substrate, a thin film transistor on the first substrate, a first electrode on the first substrate and connected to the thin film transistor, a second substrate facing the first substrate, color filters on the first substrate or the second substrate, a black matrix between the color filters on the first substrate or the second substrate, a second electrode spaced apart from the first electrode and on the first substrate or the second substrate, a second electrode conductive line on the black matrix, a spacer which is between the first substrate and the second substrate and supports the first substrate and the second substrate, and a liquid crystal layer between the first substrate and the second substrate. The spacer is electrically connected to the second electrode and the second electrode conductive line.