Abstract:
A pixel includes: a first driver connected to a first driving data line; a second driver connected to a second driving data line; and an organic light emitting diode (OLED) connected to the first driver and the second driver, the OLED to emit light in response to a data signal supplied to the first driving data line when the first driver is driven, and to emit light in response to a data signal supplied to the second driving data line when the second driver is driven.
Abstract:
A display device includes a display panel, a scan driver, and a data driver. The display panel includes a plurality of pixels connected to the scan lines and data lines. The scan driver supplies a scan signal via the scan lines. The data driver supplies data signals via the data lines. At least one scan line of the scan lines is connected to pixels in a plurality of lines, and the pixels connected to the at least one scan line is connected to different data lines. The display panel may be a non-rectangular display panel.
Abstract:
A display device, including: a substrate; an electrode unit provided on the substrate; an emission layer driven by the electrode unit; a capacitive touch sensor provided on the electrode unit; and a conductive layer provided on the touch sensor.
Abstract:
An organic light emitting display device including a scan driver configured to supply scan signals to scan lines, and configured to supply emission control signals to emission control lines, a data driver configured to supply data signals to data lines, pixels respectively including driving transistors configured to be initialized by a voltage of an initializing power source, an initializing power source generator configured to supply the voltage of the initializing power source to an initializing power source line commonly connected to the pixels, and a timing controller configured to control the scan driver, the data driver, and the initializing power source generator, wherein the initializing power source generator is configured to supply the initializing power source having different voltages during a first period in which the scan signals are supplied, and during a second period of a low frequency driving period in which the scan signals are not supplied.
Abstract:
A touch sensor includes a touch sensing column, a touch sensing row, and connectors. The touch sensing column has a plurality of first touch sensing electrodes extending in one direction. The touch sensing row has a plurality of second sensing electrodes extending in a direction intersecting the touch sensing column. The connectors connect adjacent first touch sensing electrodes or adjacent second touch sensing electrodes. Here, at least some of the first touch sensing electrodes or the second touch sensing electrodes include a first region connected to the connectors and having a first line resistance, and a second region adjacent the first region and having a second line resistance. The first line resistance is different from the second line resistance.
Abstract:
A display device, including: a substrate; an electrode unit provided on the substrate; an emission layer driven by the electrode unit; a capacitive touch sensor provided on the electrode unit; and a conductive layer provided on the touch sensor.
Abstract:
An organic light emitting display device including a scan driver configured to supply scan signals to scan lines, and configured to supply emission control signals to emission control lines, a data driver configured to supply data signals to data lines, pixels respectively including driving transistors configured to be initialized by a voltage of an initializing power source, an initializing power source generator configured to supply the voltage of the initializing power source to an initializing power source line commonly connected to the pixels, and a timing controller configured to control the scan driver, the data driver, and the initializing power source generator, wherein the initializing power source generator is configured to supply the initializing power source having different voltages during a first period in which the scan signals are supplied, and during a second period of a low frequency driving period in which the scan signals are not supplied.